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Abstract

In this article we consider how one may systematically determine materially-conserved quantities (mcqs)
from the equations describing the dynamics of a 
uid and then how these can be used to construct quite
general, exact, analytical solutions of these equations. Such solutions necessarily re
ect underlying physical
processes and are often general enough to satisfy strong boundary conditions. The method described
for determining mcqs is systematic and essentially algorithmic, and is therefore a good candidate for
implementation using a computer-algebra system.

We use this method to recover three mcqs of the equations describing large-scale 
uid 
ow one the
surface of a rotating sphere (geostrophic 
ow). We then prove that these geostophic equations admit no
further mcqs. Next, we describe how to construct fairly general, exact solutions from these quantities.

Finally we discuss the application of these ideas to general systems of 
uid-dynamical equations,
in particular we consider under what conditions there exist mcqs which hold for a signi�cant number of
solutions of a system of governing equations and when these can be found without a priori determining
these solutions.

1. Introduction

It is well known that the dynamics de�ned by the equations which describe large-scale


ow of a thin layer of 
uid on the surface of a rotating sphere (e.g. the world's oceans),

the geostrophic equations, admit certain materially conserved quantities (mcqs). These

quantities have been used in various ad hoc ways to construct solutions of the equations.

A systematic approach is needed. Moreover, this approach should be applicable to other


uid systems. In this paper we discuss how one can systematically determine the mcqs of a

wide class of 
uid-dynamical systems and how they may be used to construct surprisingly

general analytical solutions.

Given n mcqs of a system of pdes in n independent variables the mcqs are necessarily

functionally-related. These relations take the form of di�erential equations which are

signi�cantly simpler than the governing equations. Solution of these equations yields classes

of solution ansatz which necessarily re
ect fundamental underlying physics and which satisfy

strong boundary conditions | stronger than those which may be satis�ed by solutions
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obtained from point symmetries (e.g., Bluman & Kumei, 1989; Olver, 1986; Stephani, 1990)

for example (see Section 5 for further discussion on this).

We show how one can search, in a systematic, essentially algorithmic way, for such

materially conserved quantities directly from the governing equations of a large class of 
uid-

dynamical systems. The method is a good candidate for implementation using a computer-

algebra system such as maple or macsyma. We apply this method to the geostrophic

equations. We then discuss the number of mcqs a given system can have. We show that the

geostrophic equations have only three mcqs (to the author's knowledge no such proof has

been previously given) and that in general a system of equations in n independent variables

has n mcqs, though it is not obvious, in general, how to �nd these systematically without

�rst solving the governing equations; we consider under what circumstances it is possible to

do this.

The class of solutions which one �nds from the mcqs of a system depends on the

function relating them; this function is arbitrary. Hence the question of which such functions

lead to physical solutions thus arises. We �nally describe how one can do this by introducing

additional physical processes into the system.

2. Background

The equations most often used to describe large-scale motion of a thin layer of 
uid on the

surface of a rotating sphere are, in non-dimensional form,

u = �
py
y
; v =

px
y
; � = pz; (2:1a)

ux + vy + wz = 0 (2:1b)

and

u�x + v�y + w�z = 0 (2:1c)

(three momentum equations, continuity and a thermodynamic equation, respectively), where

u, v and w are the components of the velocity �eld in the x, y and z directions, � is density,

and p is pressure. They may be written

MxMzzz + y(MxzMyzz �MyzMxzz) = 0; (2:2i)

u = �
Myz

y
; v =

Mxz

y
; w =

Mx

y2
; p =Mz; � =Mzz (2:2ii)

(Welander, 1959). These equations are well known to admit the three materially-conserved

quantities (mcqs)

� =Mzz; B =Mz � zMzz and q = yMzzz: (2:3)

Physically, this means that these three quantities take a constant value on the trajectory of

every 
uid-parcel. Each may be interpreted physically: � =Mzz is the density of the 
uid;
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B =Mz � zMzz is the Bernoulli function which is associated with the energy per unit mass

of the 
uid (e.g., Batchelor, 1967); q = yMzzz is the potential vorticity, a quantity related

to the usual vorticity of a 
uid (e.g., Pedlosky, 1987).

Welander (1971) showed that these three mcqs must be functionally-related, i.e.,

that

yMzzz =M(Mzz;Mz � zMzz); (2:4)

for some function M. Signi�cantly, (2.4) is an ordinary di�erential equation for M(z;x; y)

(x and y play only a parametric rôle). Hence, if this function can be determined then we

have only to integrate an ode and ensure consistency with the governing equation, (2.2i).

This is a huge simpli�cation of the problem.

Motivated by these ideas, we would like some systematic method of determining mcqs

of a system of governing equations and also a method of relating these which, ideally, re
ects

the physics of the situation and leads to classes of solutions which are relevant. Furthermore,

we would like these methods to have some degree of generality, i.e, be applicable to other

systems of partial di�erential equations. We address these issues in the following sections.

Notation

The following notation is used: @xu = ux; uy; uz and Mx = Mx;My;Mz, i.e., boldface

subscripts indicate all derivatives of the corresponding order. Hence Mxx = Mxx;Mxy; : : :

etc.

3. Determiningmcqs

In this section we �rst introduce formally the concept of material conservation-laws of a

di�erential equation. We then show how one can directly search for such laws and recover

the three quantities, (2.3). Finally we prove that no more materially-conserved quantities

of the geostrophic equations, (2.2), exist.

Motivated by the conservation of physical quantities such as energy and momentum,

a dynamical quantity Q = Q(t; s(t); _s(t)) (where s = (s1; s2; : : :) are the trajectory

coordinates) is conserved if the di�erential equation

dQ

dt
=

�
@

@t
+ _s�

@

@s
+ �s�

@

@ _s

�
Q = 0 (3:1)

is satis�ed. More generally, a quantity

Q = Q(t; s(t); _s(t); �s(t); : : :)

is conserved if

Dt(Q) = 0 (3:2)

where

Dt =
@

@t
+ _s�

@

@s
+ �s�

@

@ _s
+ : : : (3:3)
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For an arbitrary di�erential equation

�(x; u; @xu; : : :) = 0 (3:4)

in which we do not distinguish between temporal and spatial independent variables we can

generalise further. We consider conserved quantities of the form

Q = Q(x; u; @xu; : : :); (3:5)

and our conservation law becomes

nX
i=0

Di(Q
i) = 0; (3:6i)

where

Di =
@

@xi
+ s�i

@

@s�
+ s�ij

@

@s�j
+ : : : (3:6ii)

which must be satis�ed for all solutions u(x) of (3.4) (Ibragimov, 1994, Chapter 6).

De�nition A conserved quantity , Q, of order n, is a function Q(x; u; @xu; : : : ; @
n
x
u)

satisfying (3.6).

In continuum mechanics we often consider materially-conserved quantities, that is

quantities constant on each trajectory; in this case (3.6) is more usually written

�
@

@t
+ _s�r

�
Q(x; u; @xu; : : :) = 0; (3:7)

equality holding on solutions.

One can use Equations (3.1) to (3.7) directly to �nd materially conserved quantities

of a system of equations. In doing this one must remember that as a conservation law,

(3.7), must be satis�ed for all solutions, u(x; y; z; t), of a di�erential equation and one must

therefore take account of its frame.

De�nition The frame of a di�erential equation consists of the equation itself together

with its di�erential consequences.

It may be the case that Q is a function of derivatives of higher order than the highest

order terms in the given di�erential equation, (3.4); we must then take into account not

only the equation itself, but also its di�erential consequences.

3.1. Determining mcqs Algorithmically

With the formal de�nition of a material-conservation law in mind we now describe how

one may directly determine materially-conserved quantities of the system (2.2). There is a
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considerable amount of algebra involved for third-order and higher laws, so to illustrate the

principles involved more clearly we �rst consider laws of up to second order, i.e., we look

for quantities,

Q = Q(x;M;Mx;Mxx) (3:8)

for which (3.7) is satis�ed.

Substituting (3.8) into (3.7), using (2.2i) { (2.2ii) and expanding yields

�Myz

�
Qx +QMMx +QMx

Mxx +QMy
Mxy +QMz

Mxz +QMxx
Mxxx

+QMxy
Mxxy +QMxz

Mxxz +QMyy
Mxyy +QMyz

Mxyz +QMzz
Mxzz

	
+Mxz

�
Qy +QMMy +QMx

Mxy +QMy
Myy +QMz

Myz +QMxx
Mxxy

+QMxy
Mxyy +QMxz

Mxyz +QMyy
Myyy +QMyz

Myzz +QMzz
Myzz

	
+
Mx

y

�
Qz +QMMz +QMx

Mxz +QMy
Myz +QMz

Mzz +QMxx
Mxxz

+QMxy
Mxyz +QMxz

Mxzz +QMyy
Myyz +QMyz

Myzz +QMzz
Mzzz

	
= 0:

(3:9)

This equation must hold simultaneously with the frame of (2.2i), however, since in this case

we are concerned only with materially-conserved quantities of up to second order then we do

not need to consider di�erential consequences of (2.2i), only the equation itself. We choose

to eliminate Mzzz between (2.2i) and (3.9) yielding

�Myz

�
Qx +QMMx + : : :+QMyz

Mxyz

	
+Mxz

�
Qy +QMMy + : : :+QMyz

Myzz

	
+
Mx

y

�
Qz +QMMz + : : :+QMyz

Myzz

	
= 0:

(3:10)

(Care is needed in choosing which term to eliminate since Q and its derivatives potentially

depend on some of the terms in (2.2i); Q does not depend on Mzzz in this case.) Note the

coe�cient of QMzz
is identically zero owing to the cancellation of certain terms. Since (3.10)

must hold for all solutions M(x; y; z) and Q does not depend on third-order derivatives of

M , then the coe�cients of products of powers of these third-order derivatives must each

be identically zero: from the coe�cients of Mxxx, Mxxy, Mxxz, Mxyy, Mxyz, Myyz, Myyy,

Mxzz and Myzz, respectively, we obtain

MyzQMxx
= 0; (3:11a)

MxzQMxx
�MyzQMxy

= 0; (3:11b)

MxQMxx
� yMyzQMxz

= 0; (3:11c)

MxzQMxy
�MyzQMyy

= 0; (3:11d)

y(MxzQMxz
�MyzQMyz

) +MxQMxy
= 0; (3:11e)

yMxzQMyz
+MxQMyy

= 0; (3:11f)

MxzQMyy
= 0; (3:11g)

MxQMxz
= 0; (3:11h)

MxQMyz
= 0: (3:11i)
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In general Mx, Mxz and Myz are nonzero, so from (3.11) we conclude that

QMxx
= QMxy

= QMxz
= QMyy

= QMyz
= 0: (3:12)

Note that we have not shown that QMzz
= 0 (recall the cancellation of terms mentioned

above); indeed it turns out that QMzz
6= 0.

Using (3.12) we �nd that (3.10) simpli�es substantially, viz.

�Myz

�
Qx +QMMx +QMx

Mxx +QMy
Mxy

	
+Mxz

�
Qy +QMMx +QMx

Mxx +QMy
Myy

	
+
Mx

y

�
Qz +QMMz +QMx

Mxz +QMy
Myz +QMz

Mzz

	
= 0:

(3:13)

Since we have determined that Q depends on only one second-order derivative of M , Mzz,

then the coe�cients of products of powers of all other second-order derivatives mush each

be identically zero. From the coe�cients of MxxMyz, MyyMxz, MyzMxy and MxzMxy we

see that

QMx
= QMy

= 0; (3:14)

and then using this result, from the coe�cients of Mxz and Myz we �nd

Qy +QMMy = 0; (3:15a)

Qx +QMMx = 0; (3:15b)

Mx

y
fQz +QMMz +QMz

Mzzg = 0: (3:15c)

From (3.14) we know that Q is independent ofMx andMy, so that from (3.15a) and (3.15b)

we �nd

Qx = Qy = QM = 0: (3:16)

It remains to satisfy (3.15c). Mx is not in general zero and then since QM = 0 then we

require the solution of Qz+QMz
Mzz = 0; there are two cases to consider: (i), Qz = QMz

= 0

and (ii), QzQMz
6= 0. In Case (i) the general solution is Q = Q(Mzz) and in Case (ii) it

is Q = Q(Mz � zMzz). Hence all second-order, materially-conserved quantities of system

(2.2) are of the form

Q = Q(Mzz;Mz � zMzz): (3:17)

It is easy to check that all quantities of this form are indeed materially-conserved.

We now turn to the problem of determining all materially-conserved quantities of up

to third order, i.e., we assume

Q = Q(x; y; z;M;Mx;My;Mz;Mxx;Mxy; : : :Mzz;Mxxx;Mxxy; : : : ;Mzzz): (3:18)

Substituting this into (3.7) we obtain

�Myz

�
Qx +QMMx : : :+QMzzz

Mxzzz

	
+Mxz

�
Qy +QMMy : : :+QMzzz

Myzzz

	
+
Mx

y

�
Qz +QMMz : : :+QMzzz

Mzzzz

	
= 0

(3:19)
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and this must hold simultaneously with the frame of (2.2i) (cf. (3.9), above). This time,

since (3.19) contains derivatives of M of up to fourth order we must consider not only (2.2i)

itself, but in addition its derivative with respect to each independent variable, x, y and z,

viz.,

MxxMzzz +MxMxzzz + y(MxxzMyzz + : : :�MyzMxxzz) = 0; (3:20a)

MxyMzzz +MxMyzzz +MxzMyzz

�MyzMxzz + y(MxyzMyzz + : : :�MyzMxyzz) = 0; (3:20b)

MxzMzzz +MxMzzzz + y(MxzzMyzz + : : :�MyzMxzzz) = 0: (3:20c)

respectively. The procedure is to use (2.2i), (3.20a), (3.20b) and (3.20c) to eliminate four

terms from (3.19) and then continue in a similar way to the second order case above.

Again we must proceed carefully as the derivatives of Q in (3.19) potentially depend upon

all derivatives of M up to third order and we cannot eliminate implicit terms! We �rst

choose to eliminate Mxxzz, Myyzz and Mzzzz from (3.19) by using (3.20a), (3.20b) and

(3.20c), respectively; we may do this without di�culty, Q being independent of fourth-order

derivatives of M . We obtain

QMxzz

�
MxxMzzz +MxMxzzz + y(MxxzMyzz +MxzMxyzz �MxyzMxzz)

	
+QMyzz

�
MyzMxzz : : :+ y(MyyzMxzz + : : :)

	
�Myz

�
Qx +QMMx +QMx

Mxx + : : :+QMzzz
Mxzzz

	
+Mxz

�
Qy +QMMy +QMx

Mxy + : : :+QMzzz
Myzzz

	

+
Mx

y

�
QMxxz

Myz

[MxxMzzz + : : :+ y(MxxzMyzz + : : :)]

+
QMyyz

Mxz

[MyzMxzz � : : :+ y(MyyzMxzz + : : :)]

+
QMzzz

Mx

[y(MyzMxzzz �MxzMyzzz)�MxzMzzz]

+Qz +QMMz + : : :+QMyzz
Myzzz

�
= 0:

(3:21)

Note that owing to the cancellation of certain terms the coe�cient of QMzzz
is zero. Since

(3.21) must be satis�ed for all solutions M(x; y; z) of (2.2i) then the coe�cients of products

of powers of each fourth-order derivative must be identically zero (in drawing conclusions

from these identities we must take account of (2.2i), at least in principle, as we have

considered only (3.20a), (3.20b) and (3.20c) so far). From the coe�cients of Mxxxx, Myyyy,

Mxxxy, Mxxxz, Mxxyy, Mxxyz, Mxyyy, Mxyyz, Mxzzz, Myzzz, Myyyz and Mxyzz we obtain

respectively

�MyzQMxxx
= 0; (3:22a)

�MxzQMyyy
= 0; (3:22b)

�MyzQMxxy
+MxzQMxxx

= 0; (3:22c)
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�MyzQMxxz
= 0; (3:22d)

�MyzQMxyy
+MxzQMxxy

= 0; (3:22e)

�MyzQMxyz
+MxzQMxxz

+
Mx

y
QMxxy

= 0; (3:22f)

�MyzQMyyy
+MxzQMxyy

= 0; (3:22g)

�MyzQMyyz
+MxzQMxyz

+
Mx

y
QMxyy

= 0: (3:22h)

�

�
1�

1

y

�
MxQMxzz

+
M2

xQMxxz

yMyz

= 0: (3:22i)

�MxQMyzz
�
M2

xQMyyz

yMxz

+
Mx

y
QMyzz

= 0: (3:22j)

MxzQMyyz
+
Mx

y
QMyyy

= 0: (3:22k)

�yMxzQMxzz
�MyzQMyzz

+ yMyzQMyzz
+MxzQMxzz

+

�
yMxzQMxxz

Myz

+
yMyzQMyyz

Mxz

+QMxyz

�
Mx

y
= 0: (3:22l)

In general Mx, Mxz and Myz are nonzero, so from (3.22) we conclude that

QMxxx
= QMyyy

= QMxxy
= QMxxz

= QMxyy
= QMxyz

= QMyyz
= QMxzz

= QMyzz
= 0:

(3:23)

Note that we have not shown that QMzzz
= 0 as no coe�cient of a fourth-order derivative

of M in (3.21) involves QMzzz
(recall the cancellation of terms mentioned above); indeed

it turns out that in general QMzzz
6= 0. In the special case QMzzz

= 0 we reduce to the

search for second-order materially-conserved quantities considered above. We proceed with

the general case.

It turned out that in obtaining (3.23) the condition (2.2i) is not needed; since we are

now sure that Q is independent of bothMxzz andMyzz we can use (2.2i) to eliminate one of

these third-order terms from (3.21). Choosing Mxzz and using (3.23) then (3.21) becomes

�Myz

�
Qx +QMMx +QMx

Mxx +QMy
Mxy +QMz

Mxz +QMxx
Mxxz

+QMxy
Mxxy +QMxz

Mxzz +QMyy
Mxyy +QMyz

Mxyz +QMzz
Mxzz

+
QMzz

yMyz

[MxMzzz + yMxzMyzz]
	

+Mxz

�
Qy +QMMy +QMx

Mxy +QMy
Myy +QMz

Myz +QMxx
Mxxy

+QMxy
Mxyy +QMxz

Mxyz +QMyy
Myyy +QMyz

Myzz +QMzz
Myzz

	
+
Mx

y

�
Qz +QMMz +QMx

Mxz +QMy
Myz +QMz

Mzz +QMxx
Mxxz

+QMxy
Mxyz +QMxz

Mxzz +QMyy
Myyz +QMyz

Myzz +QMzz
Mzzz

	
�

1

y
MxzMzzzQMzzz

= 0:

(3:24)

(We �nd that there are no terms involving QMzz
owing to cancellation of terms.) Since

we have shown that Q is independent of all but one third-order derivative of M then
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the coe�cients of di�erent products of powers of third-order terms in (3.24), except those

involving Mzzz must be identically zero, viz.,

�MyzQMxx
= 0; (3:25a)

�MyzQMxy
+MxzQMxx

= 0; (3:25b)

�MyzQMxz
+
Mx

y
QMxx

= 0; (3:25c)

�MyzQMyy
+MxzQMxy

= 0; (3:25d)

�MyzQMyz
+MxzQMxz

+
Mx

y
QMyz

= 0; (3:25e)

Mx

y
QMyz

= 0; (3:25f)

MxzQMyy
= 0; (3:25g)

MxyQMyz
+
Mx

y
QMyy

= 0; (3:25h)

Mx

y
QMxz

= 0: (3:25i)

In general Mx, Mxz and Myz are nonzero, so from (3.25) we conclude that

QMxx
= QMxy

= QMxz
= QMyy

= QMyz
= 0: (3:26)

Now, since QMxx
= QMyy

= 0 then the coe�cients of di�erent products of powers of

the corresponding second-order derivatives of M in (3.25) must be identically zero and so,

from the coe�cients of Mxx and Myy, we obtain

�MyzQMx
= 0; (3:27a)

MxzQMy
= 0; (3:28b)

respectively, from which we conclude

QMx
= QMy

= 0: (3:29)

Using results (3.26) and (3.29) then (3.24) simpli�es considerably, viz.,

�Myz(Qx +QMMx)

+Mxz

�
Qy +QMMy �

1

y
MzzzQMzzz

�

�
Mx

y
fQz +QMMz +QMz

Mzzg = 0:

(3:30)

Finally, since QMyz
= QMx

= 0 then from the coe�cients of MxMyz and Myz we obtain

QM = Qx = 0; (3:31)
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leaving

Mxz

�
Qy �

1

y
MzzzQMzzz

�
+
Mx

y
fQz +MzzQMz

g = 0: (3:32)

Since in general MxMxz 6= 0 then

Qy �
1

y
MzzzQMzzz

= 0; (3:33a)

Qz +MzzQMz
= 0: (3:33b)

The general solutions to these equations are respectively Q = Qa(yMzzz; ca), Q =

Qb(Mz � zMzz;Mzz; cb), where ca and cb are constants of integration; therefore the general

materially-conserved quantity of the system (2.2) is

Q = Q(yMzzz;Mz � zMzz;Mzz): (3:34)

It is easy to check that all quantities of this form are indeed materially-conserved.

3.2. The Question of Further mcqs

Using an essentially algorithmic method we have found three materially-conserved quantities

of the system (2.2) or order 3 or less. Are there other such quantities, of higher order?

Using the method, what happens when there are no mcqs corresponding to the ansatz

being studied?

Recall our de�nition of a mcq, (3.7). In the context of (2.2) this becomes

�
�
Myz

y

@

@x
+
Mxz

y

@

@y
+
Mx

y2
@

@z

�
Q = 0; (3:35)

which may be written (informally) as

dx

�Myz=y
=

dy

Mxz=y
=

dz

Mx=y
=

dQ

0
: (3:36)

The general solution of (3.36) includes exactly three \constants" of integration so that the

general solution of (3.35) is necessarily of the form

Q = S(C1; C2; C3); (3:37)

where C1, C2 and C3 are functions of y and derivatives of M , i.e., Q can at most be a

function of three arguments. Hence there are no materially-conserved quantities of fourth-

order or higher and (3.34) is indeed the most general one (we discuss this idea for a general


uid-dynamical system in Section 5).

It is worth looking brie
y at how the method would show that there were no (further)

mcqs corresponding to a particular ansatz, for example, for (2.2), that there are no fourth-

order quantities (one will not always be as fortunate as for the system above!). Rather
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than consider ans�atze of the form Q = Q(x;M;Mx;Mxx;Mxxx;Mxxxx), or considering

an alternative system of governing equations, we can see what will happen by looking again

at the computations of Section 3.1. When looking for mcqs of up to second order we noted

that the coe�cient of QMzz
was identically zero (see text between Equations (3.10) and

(3.11)); also, when looking for mcqs of up to third order we noted that the coe�cient of

QMzzz
was identically zero (see text between Equations (3.21) and (3.22)). These fortuitous

events lead to (3.15c), and to (3.33a) and (3.33b), the �nal systems of equations for mcqs,

Q. Were this not the case then one would have obtained equations forcing the conclusion

that QMzz
= QMzzz

= 0 (cf. Equations (3.11) and (3.22)), and our �nal equations would

be, respectively,
Mx

y
fQz +QMMzg = 0;

and

Qy = Qz = 0;

from which we must conclude that there are no mcqs. In short, the fortuitous cancellation

of certain terms from the computation leading to \zero coe�cients" for corresponding

derivatives of Q, as one proceeds, leads to the existence of mcqs | should such \zero

coe�cients" not appear then nor will mcqs.

4. Constructing Solutions

In this section we consider the construction of solutions of the governing equations, (2.2),

from the functionally-related materially-conserved quantities, i.e., from (2.4). First we

consider an example solution, in an ocean basin, which is of particular physical signi�cance

and illustrates the generality of solutions obtainable from (2.4). The example shows that

solutions constructed by means of the mcqs satisfy all the boundary conditions which are

usually applied to the problem. Previous analytical solutions are either unable to satisfy

a full set of general boundary conditions (e.g., Salmon & Hollerbach, 1991; Hood, 1996;

Hood & Williams, 1996) or impose a particular physical character on the solution (e.g.,

Robinson & Stommel, 1959; Welander, 1959; Needler 1967 and 1971; Hodnett, 1978); either

way generality is lost. Secondly we consider how one might systematically determine the

function relating the mcqs,M in (2.4), by generalising (2.2) in a physically-motivated way.

4.1. An Example | An Ocean Basin

We now describe how, using solutions determined from (2.4), one can determine the ocean

dynamics and thermodynamics in the northern Atlantic Ocean (for a full description of the

problem see (Hood & Williams, 1996, and references contained therein). Figure 4.1 shows

a schematic west-east vertical section through the region of interest with the boundary

conditions which are to be applied. It is not clear, either from a physical or mathematical

11
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wE = w(x; y)

sea surface:

z = B� = 0 � = �S(x; y)

sea 
oor:

� = u = v = w = B = 0

no 
ow

Figure 4.1. A schematic west-east vertical section through the northern Atlantic
Ocean showing the boundary conditions usually applied to the model: at the sea-
surface, z = B� = 0, the vertical velocity, wE = w(x; y) and, optionally, the surface
density distribution, �S = �(x; y), are imposed; at depth, a level of no-motion may be
assumed; the western boundary is passive, but at the eastern boundary an integral
condition is applied (see text); in addition the the density pro�le may be prescribed
at certain locations, (x; y).

standpoint, what the function M should be. However, previous work on special cases

suggests we take the following approach.

First, following Killworth (1987), we change to a coordinate system in which we

use density, �, as the \vertical" coordinate, rather than depth, z. Then, choosing

B(x; y; �) = p+ �z, the Bernoulli function, as the dependent variable in place of M(x; y; z),

the governing equations, (2.2), become

u = �
By

y
; v =

Bx

y
; z = B�; w = uzx + vzy; (4:1i)

(BxBy�� �ByBx��)y �BxB�� = 0; (4:1ii)

the potential vorticity is

q =
y

B��

(4:2)

and so (2.4) becomes

B�� = yB(B; �) (4:3)

(a considerable simpli�cation).

The simplest function B is linear giving

B�� = f1(�)B + f0(�); (4:4)

12
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where both f1(�) and f0(�) are to be determined. In fact this simple case is of particular

physical signi�cance: Killworth (1987) considered the case f0 = 0 with the restricted

boundary conditions � = �S(y) (i.e., the surface density is a function of only latitude)

with w = wE(y) (the surface vertical velocity is also a function of latitude, only) and/or

u(0; y; z) = 0 (eastern velocity at the eastern boundary is zero at all depths and latitudes);

Salmon (1994) considered f1 = 0 and added time-dependence to the problem.

From (4.4) we expect to �nd two functions of integration, a(x; y) and b(x; y); we also

have to �x f1(�) and f0(�). The boundary conditions for this problem are a subject of some

debate; we therefore consider two cases. (2.2) are a hyperbolic system (Huang, 1988) so one

cannot expect to apply conditions at all boundaries: the northern, southern and western

boundaries are all passive. We apply conditions at the surface, bottom and an integral

condition at the eastern boundary. (For more detailed discussion of boundary conditions

for this problem see Killworth, 1987; Samelson & Vallis, 1997; Huang, 1988.)

Case i.: We impose the vertical velocity �eld at the surface (more accurately, below

some surface layer, subject to di�erent dominant dynamics, which we patch onto our solution

domain), i.e., we prescribe wE(x; y), where

wE(x; y) =
1

y
(BxBy� �ByBx�)

B�=0

: (4:5a)

We also assume that 
ow below some depth, which we take to be � = 0, without loss of

generality, is an order of magnitude weaker than in our solution domain; this is described

by

B(x; y; 0) = 0 (4:5b)

(Killworth, 1987, Section 2).

Case ii.: Alternatively, we can prescribe both w and � at the surface, i.e.,

wE(x; y) =
1

y
(BxBy� �ByBx�)

B�=0

; (4:6a)

�S(x; y) = �
B�=0

: (4:6b)

In fact these conditions are not enough to �x a(x; y) and b(x; y). In each case we have

imposed one algebraic constraint, so that a and b are no longer independent, together with

one �rst-order partial di�erential equation with independent variables x and y. Consequently

it remains to �x an arbitrary function of some known function of x and y resulting from the

integration of the �rst-order pde. This can be done by placing an (integral) constraint on

the 
ow or heat-
ux through the eastern boundary. Finally, f1(�) and f0(�) may be set by

prescribing the variation of density with depth at two points (x; y).

4.2. Systematically FindingM

Above we considered a particular case of M in (2.4) (i.e., B in (4.3)), motivated by other

authors' work. The question remain, how given a particular problem, would one �nd M

13
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systematically? An answer, it turns out, is to make the model which the governing equations

(2.2) represents more realistic.

(2.2) represent an ideal system, i.e., a system in which di�usion, friction and other

such e�ects are assumed negligible. This is done for simplicity and is only approximately

true. What happens if we introduce some non-ideal e�ect, parametrised by �, 0 < � � 1?

The relation (4.3) will now be only approximately true. We suppose

B�� = yB(�;B; �x; �y); (4:7)

i.e., the non-ideal e�ect is balanced, mathematically, by a slow variation in the functional

relation between the mcqs.

For illustration let us consider Fickian di�usion, so that, (4.1ii) becomes

(BxBy�� �ByBx��)y �BxB�� = �y2B���; (4:8)

and let us work with the special case studied by Salmon (1994), i.e.,

B�� = yF(�): (4:9)

Generalising (4.9) to include slow variation with x and y, and integrating we obtain

B(x; y; �) = yF (�; �x; �y) + �b(x; y) + a(x; y); F (�) =

Z �Z �1 1

Q(�2)
d�2 d�1 (4:10)

(where a and b are functions of integration, to be determined), then substituting into (4.8)

terms of O(1) cancel leaving

(�bx + ax)FY �� = y2F��� +O(�2); Y = �y: (4:11)

This di�erential constraint does not fully determine F , or equivalently F , but perhaps points

the way. This approach, for both Salmon's special case, (4.9), and the general case is actively

being considered by the author (Hood, 1997).

5. Discussion and Conclusions

In the preceding sections we have considered how one might use the conservation laws of

the governing partial di�erential equations describing a system to construct exact analytical

solutions; we have focused on the equations describing large-scale 
ow within the ocean (the

geostrophic equations). For these equations we used a systematic method to recover three

materially-conserved quantities which were necessarily functionally-related; this relation

takes the form of a di�erential equation which is signi�cantly simpler than the governing

equations, the solution of which can be used as a quite general solution-ansatz for the

governing pdes. We also proved that no more mcqs exist. Finally we considered an example,

an ocean basin, which illustrated the generality of the solutions obtained and suggested a

14
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mechanism re
ecting higher-order dynamics by which one might determine the function

relating the quantities.

Generality of solutions

It is important to emphasise that solutions obtained by means of relating materially-

conserved quantities are signi�cantly more general than those obtained by other analytical

methods, for these equations. In early work on (2.2) informed guesses where made for forms

of solution sometimes based on similarity variables or partial separation of variables, e.g.,

Robinson & Stommel, 1959; Welander, 1959; Needler 1967 and 1971; Hodnett, 1978. These

works mark signi�cant analytical progress on a formidable system of equations. However,

in each case there are limitations on boundary conditions which can be satis�ed and the

physical character of the solutions, perhaps motivated by the physics, is built into the

solution method. An alternative, systematic (indeed algorithmic) method has been tried:

Salmon & Hollerbach (1991) used Lie's method (e.g., Bluman & Kumei, 1989; Olver, 1986;

Stephani, 1990) to determine a set of point symmetries of (2.2), with Fickian di�usion

added in (2.2c) (cf. (4.8)). This work was extended, for more general di�usion, using a more

general method which obtained more symmetries by Hood (1996) and Hood & Williams

(1996). Further, the time-dependent problem was studied (using Lie's method) by Edwards

(1996). These symmetries were used to construct classes of solutions which were general

enough to carry out simple experiments to investigate particular physical processes, however,

again, only a limited class of boundary conditions can be satis�ed. In contrast, integration

of (2.4) (equivalently (4.3)) yields the general solution of the governing equations, (2.2)

(equivalently (4.1)), in the sense that there are two arbitrary functions of x and y and (at

least) one of z (or �). As illustrated in Section 4.1 these solutions can satisfy the full set of

boundary conditions that one would expect to impose.

Wider Application

These ideas are certainly not restricted to the geostrophic equations. In general, given a

system of pdes in n independent variables with n materially-conserved quantities known,

one can construct a solution ansatz in exactly the same way. For example consider the

2D-Euler equations,
Du

Dt
= g �

1

�
rp: (5:1)

Both vorticity, ! (where !k = ! = r � u), and the stream-function,  (where

u = @ =@y and v = �@ =@x, which automatically ensures mass conservation), are

materially-conserved, whence
@2 

@x2
+
@2 

@y2
= G( ); (5:2)

for some function G. (5.2) alone determines the 
ow, given G. Certain functions have

been considered (e.g., many workers have assumed a linear q- relationship, but there is

analytical, numerical and experimental evidence that this is not always possible, especially

in the case of a \tripolar" vortex (van Heijst et al., 1991; Legras et al., 1988)); as in Section

4.2 one could add a small amount of some non-ideal e�ect to suggest what G might be.
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It is likely that for any system of equations for which these ideas are fruitfully

employed, the resulting analytical solutions will be signi�cantly more general than

those resulting from point-symmetries | stronger boundary conditions will be satis�ed.

Furthermore, one may be able to construct useful solutions even with fewer than n mcqs

known | indeed, the most physically relevant case may involve fewer than n (e.g., Salmon,

1994).

In Section 3.2 we showed that the geostrophic equations, (2.2), have no more than

three mcqs. This principle carries over to any 
uid-dynamical system. An mcq must satisfy

�
u
@

@x
+ v

@

@y
+ w

@

@z

�
Q = 0 (5:3)

(for a steady system), which may be written (informally) as

dx

u
=

dy

v
=

dz

w
=

dQ

0
: (5:4)

In principle, one can always solve the governing equations for u(x; y; z), v(x; y; z) and

w(x; y; z), and then integrate (5.4) for Q as a function of three \constants" of motion.

This is true for any u(x; y; z), v(x; y; z) and w(x; y; z). It follows that a three-dimensional,

steady system has three mcqs. This principle is readily extended to systems with more (or

fewer) independent variables. However, to be of interest, a quantity must be materially-

conserved for a wide class of solutions of the governing equations (preferably all solutions),

i.e., we want to be able to �nd mcqs without �rst solving the governing equations | indeed,

we may well intend that knowledge of the mcqs is to help us solve them! If the equations

describing a 
uid-dynamical system can be put in potential form, cf. (2.2), then we have a

much better chance of �nding useful mcqs. In this case we can construct an equation such as

(3.35). It may be possible to integrate this directly, though this is unlikely. Usually �nding

the mcqs by using the method described in Section 3.1 will be the most fruitful approach:

given that the number of mcqs is known from the number of independent variables then

one can consider candidates of increasing order, using a computer algebra system, until all

these are found.

Relation of point-symmetry solutions and mcq solutions; Noether

The question arises, what is the connection between solutions obtained by means of point

symmetries (of the governing equations) and those constructed from materially-conserved

quantities? Is one a subset of the other? Noether's Theorem (e.g, Bluman & Kumei, 1989;

Stephani, 1990) gives us some insight.

Solutions obtainable from material-conservation laws are a consequence of the

existence of point-symmetries of the action integral of a system; in contrast, the usual point-

symmetry methods determine solutions which re
ect symmetries of the governing equations

themselves. Since the solutions constructed from mcqs are general in the sense stated above

then one would usually expect solutions constructed from point symmetries to be special

cases of the former | of course some of the point-symmetry solutions may well be singular.
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Noether's theorem suggests an alternative approach to the construction of

conservation laws to that advocated in this paper: determine the point symmetries of the

action integral and use these to construct the mcqs. This approach is also essentially

algorithmic, however, one is limited to those systems for which a Lagrangian is known. This

is a signi�cant weakness from which the more direct approach of Section 3 does not su�er.

Backwards:

Finally, one can turn the whole problem around. Given that one can determine the

materially-conserved quantities of a 
uid-dynamical system from the velocity �eld, an

obvious question that arises is, given n mcqs of a system in n independent variables, can

one determine the corresponding dynamics? Yes | but not uniquely. Let us return to the

three mcqs given by (2.3). Any velocity �eld for which these three quantities are materially-

conserved must satisfy

uMxzz + vMyzz + wMzzz = 0; (5:5a)

u(Mxz � zMxzz) + v(Myz � zMyzz)� wzMzzz = 0; (5:5b)

uyMxzzz + v(Mzzz + yMyzzz) + wyMzzzz = 0; (5:5c)

which is a 3 � 3 linear, algebraic system for u, v and w. Following some straightforward

algebra we �nd a solution exists provided

MxzM
2

zzz + yMzzzz(MyzMxzz �MxzMyzz) + yMzzz(MxzMyzzz �MyzMxzzz) = 0; (5:6)

and then the general solution, for u, v and w may be written,

Mxzu+Myzv = 0; (5:7a)

w = �
Mxzzu+Myzzv

Mzzz

: (5:7b)

An integrating factor for for (5.6) is easily found: multiplying through by M�2
zzz and

integrating we �nd

MxMzzz + y(MxzMyzz �MyzMxzz) =M0(x; y)Mzzz; (5:8)

where M0(x; y) is a function of integration. The dynamics corresponding to the mcqs

(2.3) is therefore given by (5.7) and (5.8). (5.8) is in fact equivalent to (2.2i) (substitute

M(x; y) +
R x

M0(x̂; y) dx̂ for M(x; y)); this equivalence re
ects a point symmetry of (2.2i)

(Salmon & Hollerbach, 1991). Nevertheless, a degree of freedom in the velocity �eld remains

| the dynamics are not uniquely determined by the mcqs.
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