
17 May 2006

Linux Security-Related Kernel-Related Stuff: LIDS

1. LIDS Acknowledgements
Brian Hatch,Overview of LIDSfor www.securityfocus.com (particularly Quick Start [Page 5]). . .

Huagang Xie, Philippe Biondi. . .

Sander Klein,man pages, FAQ. . .

2. LIDS Overview

2.1. Overview
LIDS is an enhancement for the Linux kernel, currently maintained by Xie Huagang and Philippe
Biondi, which implements additional security features including:

• file access control rules [Page 7] on a programme-by-programme basis;

• fine-grained control ofcapabilities [Page 12] of root-owned processes, again on a
programme-by-programme basis.

rpms are available for some systems, but the usual way to install a LIDS-enabled Kernel is to patch a
“vanilla” source tree and compile.

For an introduction tofile access control rulesandcapabilitiessee the Quick Start [Page 5], below.

3. LIDS Installation

3.1. Patching Kernel Source and Building

LIDS functionality comes from changes to the standard Linux kernel. Binary LIDS-enabled kernels
are not available, so installation requires the patching of kernel source code, then building/compiling
and installation of the new kernel.

The definitive documentation of building and installing a Linux kernel is given in The Kernel
HOWTO1. If you are not familiar with the procedure, you are strongly encouraged to read it!

3.2. Required Filesystem Attributes

Question: Do we need the filesystem attributes at install time (when installing the LIDS Tools — for
setting the LIDS password) or only when booted into a LIDS kernel?

On a most Unix/Linux filesystems files are uniquely identified by aninodewhich contains metadata
for the file, e.g., ownership and access control information. A standard Unix/Linux permission check
uses only information present within the inode.

1 http://www.tldp.org/HOWTO/Kernel-HOWTO/

src : unix_sec_kernel_lids.tex, from thesgml.

Unix and Linux Security: LIDS

LIDS makes use ofExtended Attributes[Page 8] — xattrs. Not all kernels are compiled with support
for xattrs; for LIDS to function correctly your LIDs-enabled kernel must be so compiled (see below).

3.2.1. Ext2/3
To obtain xattr functionality on Ext2/3 filesystems necessary for correct LIDS operation, ensure your
kernel is compiled with

CONFIG_EXT2_FS=y
CONFIG_EXT2_FS_XATTR=y
CONFIG_EXT2_FS_POSIX_ACL=y
CONFIG_EXT2_FS_SECURITY=y

CONFIG_EXT3_FS=y
CONFIG_EXT3_FS_XATTR=y
CONFIG_EXT3_FS_POSIX_ACL=y
CONFIG_EXT3_FS_SECURITY=y

and then mount filesystems with theacl option, i.e.,/etc/fstab:

proc /proc proc defaults,acl 0 0

/dev/hda10 / ext3 defaults,acl,errors=remount-ro 0 1
/dev/hda9 /boot ext3 defaults,acl 0 2
/dev/hda14 /scratch ext3 defaults,acl 0 2
/dev/hda13 /tmp ext3 defaults,acl 0 2

/dev/hda11 /usr ext3 defaults,acl 0 2
/dev/hda12 /var ext3 defaults,acl 0 2
/dev/hda3 none swap sw 0 0

/dev/hdc /media/cdrom0 udf,iso9660 ro,user,noauto 0 0
/dev/fd0 /media/floppy0 auto rw,user,noauto 0 0

3.2.2. ReiserFS and XFS
Hans Reiser has said that there will never be official support for xattr on ReiserFS v3 — though a
patch is available — but ReiserFS v4will support xattr.

XFS supports xattr — to do this efficiently, use an inode size of 512 rather than the standard 256.

3.3. Other Kernel Configuration Requirements

The Kconfig (e.g., /usr/local/src/linux-2.6.14/security/lids/Kconfig) which comes
with the LIDS kernel patch contains

depends on EXPERIMENTAL && SYSCTL && SECURITY && SECURITY_SECLVL!=y
&& SECURITY_ROOTPLUG!=y && SECURITY_SELINUX!=y
&& SECURITY_CAPABILITIES!=y

therefore, inmake config|menuconfig|xconfig, choose:

Code maturity level options

"Prompt for development and/or..." = yes

2

Unix and Linux Security: LIDS

General setup
"Sysctl support" = yes

Security options
"Enable different security models" = yes
"Default Linux Capabilities" = no
"BSD Secure Levels" = no
"NSA SELinux Support" = no

Cryptographic Options
"SHA256 digest algorithm" = yes

i.e., in.config:

CONFIG_EXPERIMENTAL=y

CONFIG_SYSCTL=y

CONFIG_SECURITY=y
CONFIG_SECURITY_NETWORK is not set
CONFIG_SECURITY_CAPABILITIES is not set
CONFIG_SECURITY_SECLVL is not set
CONFIG_SECURITY_SELINUX is not set

CONFIG_CRYPTO=y
CONFIG_CRYPTO_SHA256=y

3.4. LIDS Kernel Configuration

CONFIG_LIDS=y

CONFIG_LIDS_NO_FLOOD_LOG=y
CONFIG_LIDS_ALLOW_SWITCH=y
CONFIG_LIDS_ALLOW_LFS=y
CONFIG_LIDS_RESTRICT_MODE_SWITCH=y
CONFIG_LIDS_MODE_SWITCH_CONSOLE=y
CONFIG_LIDS_MODE_SWITCH_SERIAL=y
CONFIG_LIDS_MODE_SWITCH_PTY=y

3.5. Installation Recipe

If you are not familiar with the Linux kernel-building procedure, read the HOWTO2.

2 http://www.tldp.org/HOWTO/Kernel-HOWTO/

3

Unix and Linux Security: LIDS

Most (all?) LIDS-related documentation talks about modular kernels. LIDS-patched kernels may be
monolithic.

3.5.1. Patch a Vanilla Kernel Source
Download a “vanilla” kernel source fromwww.kernel.org and patch it with the corresponding
LIDS patch:

1. Unpack linux-x.y.z.tar.gz into <DIR>linux-x.y.z where DIR is usually
/usr/local/src/.

2. Unpacklids-p.q.r-x.y.z.tar.gz into <DIR>lids-p.q.r-x.y.z — make sure you are
using kernel and patch sources which correspond, i.e., thatx, y andz match.

3. cd into the kernel source directory and patch withpatch -p1 < <DIR>/lids-p.q.r-x.y.z.

Ensure there are no errors — you should see something like:

patching file security/lids/include/linux/lidsif.h

patching file security/lids/include/linux/lidsext.h

patching file security/lids/include/linux/lids.h

patching file security/lids/include/linux/lids_sysctl.h

patching file security/lids/lids_lsm.c

patching file security/lids/lids_acl.c

patching file security/lids/lids_cap.c

patching file security/lids/lids_init.c

patching file security/lids/lids_logs.c

patching file security/lids/lids_sysctl.c

patching file security/lids/Kconfig

patching file security/lids/Makefile

patching file security/lids/Makefile.in

patching file security/Makefile

patching file security/Kconfig
patching file Makefile

3.5.2. Configure the Patched Source
Next, configure the kernel:

1. make config|menuconfig|xconfig

2. Configure filesystem extended attributes as described above —unless the above filesystem
requirements are met, LIDS will not work properly .
Question: Do we need acl-mounted filesystems at LIDS Tools installation time, or only when

running a LIDS kernel?

a. ConfigureEXPERIMENTAL, SYSCTL andSHA256 into the kernel, as described above.

b. Configure theSECURITY options in to the kernel as described above.

c. Configure theLIDS options in to the kernel as described above.

Now build your kernel and if necessary your modules, and install —do not reboot into this new
kernel yet.

4

Unix and Linux Security: LIDS

3.5.3. Build the Tools
The final installation step is to build the LIDS Tools. Download and unpack into
<DIR>/lidstools-u.v.w, then:

1. cd into <DIR>/lidstools-u.v.w

2. ./configure KERNEL_DIR=C<DIR>/linux-x.y.z

3. make

4. make install

N.B. The configure script currently (as of v2.2.7) installslidsadm and lidsconf in /sbin,
ignoring any--prefix options —Question: Check this!.

3.5.3.1. LIDS Password
As part of themake install you will be asked for a LIDS password. This is used to make changes
to your LIDS configuration and also to start LIDS-free sessions, or to switch off LIDS entirely (or
switch it back on).Do not forget this!

3.5.4. Configure GRUB
The last step before booting your newly-installed LIDS-enabled kernel is to configure your
bootloader. It is a good idea to have a couple of choices — here are the Grub entries (for kernels
which do not requireinitrds, e.g., monolithic kernels):

title Vanilla 2.6.14-lids (lids=0)
root (hd0,8)
kernel /vmlinuz-2.6.14-lids lids=0 root=/dev/hda10

title Vanilla 2.6.14-lids
root (hd0,8)
kernel /vmlinuz-2.6.14-lids root=/dev/hda10

Notice that the first contains the kernel optionlids=0: this turns LIDS off completely — this can
be used if your configuration gets so messed up you cannot do anything, or you forget your LIDS
password.

4. LIDS Quick Start

4.1. Booting

4.1.1. Boot into LIDS
After installing [Page 1] your LIDS-enabled kernel and LIDS tools, and adding appropropriate
entries to Grub [Page 5], boot into your new kernel (the one withoutlids=0).

4.1.2. lidsadm -I
After booting into a LIDS-enabled kernel (not withlids=0) LIDS is not yet fully functional: while
File ACLs [Page 7] are enforced, Capability ACLs [Page 12] are not yet enforced and the kernel is
not yet “sealed” — modules can be loaded and unloaded (if you have a modular kernel).

5

Unix and Linux Security: LIDS

To fully-enable LIDS, issue the command (asroot),

lidsadm -I

In /var/log/messages (or similar, depending on yoursyslog configuration) you will see

.

.
Apr 18 16:23:36 pinback kernel: LIDS: GLOBAL and POSTBOOT state Config. \

files loaded
Apr 18 16:23:36 pinback kernel: LIDS: Switching to POSTBOOT state

LIDS has now switched from theBOOT state to thePOSTBOOT state — all ACLs are now enforced.

4.2. Logs

syslog messages are your friends. When diagnosing issues with a LIDS-enabled kernel its a good
idea to have anxterm open with

tail -f /var/log/syslog|messages|kern.log | grep -i LIDS

(exact details depending on yoursyslog configuration).

Messages come in two types: those telling you what LIDS is doing, e.g.,

Apr 19 11:45:47 pinback kernel: LIDS: GLOBAL and POSTBOOT state \
Config. files loaded

Apr 19 11:45:47 pinback kernel: LIDS: Switching to POSTBOOT state

and “intrusion detection”-related messages, e.g.,

Apr 19 12:14:44 pinback kernel: LIDS: exim4 (dev 3:11 inode 31917) \

pid 3131 ppid 3013 uid/gid (101/103) on (tty) : \
violated CAP_SETUID

Apr 19 12:17:01 pinback kernel: LIDS: cron (dev 3:11 inode 31887) \

pid 3132 ppid 3045 uid/gid (0/0) on (tty) : \
attempt to open shadow for reading

4.3. Switching LIDS On/Off Globally

If you have booted into a LIDS-enabled kernel but which to none of the currently-configured ACLS
to be enforced — in effect, you wish to “switch off” LIDS across the system, then, issue the
command

lidsadm -S -- -LIDS_GLOBAL

and enter the LIDS password when prompted. To switch enforcement back on across the system,

lidsadm -S -- +LIDS_GLOBAL

6

Unix and Linux Security: LIDS

4.4. LIDS-Free Session
There is usually no reason to disable LIDS across the system — a LIDS-free session only is needed
most of the time, e.g., to add or remove ACLs. To start a LIDS-free session issue the command

lidsadm -S -- -LIDS

and enter the LIDS password when prompted. Commands entered in this login/session are immune
from LIDS ACLs.

LIDS-free sessions are useful patching and installing new software.

Question: Is it possible to have two or more LIDS-free sessions running on a system, or is there a
limit of one?

4.5. Changing the Password

As part of the installation process a password was configured which is required for LIDS-related
administration. To change this start a LIDS-free session, then issue

lidsconf -P

and enter the new password when prompted, then type

lidsadm -S -- +RELOAD_CONF

to load the new configuration.

4.6. File ACLs

4.6.1. Tradition Unix File ACLs
Traditional Unix supports only owner/group/world read/write/execute permissions, e.g.,

prompt> ls -l a.out
-rwxr-xr-- 1 mc users 6008 Apr 18 09:48 a.out
prompt>

4.6.2. Filesystem ACLs
Some filesystems add a layer of permissions. For example Ext2/3:

prompt> lsattr /var/log/messages

prompt> chattr +a /var/log/messages

prompt> lsattr /var/log/messages
-----a--
prompt>

Above we have added the “append only” attribute to a file (so that potential intruders cannot edit out
evidence of their existence). For more seeman 1 lsattr andman 1 chattr.

7

Unix and Linux Security: LIDS

4.6.3. Linux Virtual Filesystem (VFS)
To quote fromThe Linux Virtual Filesystem Layer3, by Neil Brown:

The Linux operating system supports multiple different file-systems, including Ext2. . . , NFS. . . ,
FAT. . . and others. To enable the upper levels of the kernel to deal equally with all of these and other
filesystems, Linux defines an abstract layer, known as the Virtual Filesystem, or VFS. Each lower
level filesystem must present an interface which conforms to this Virtual Filesystem.

(For an introduction to the VFS API, readA Tour of the Linux VFS4, by Michael K. Johnson.)

4.6.4. Extended Attributes (xattr)
These are filesystem attributes — name/value pairs associated with files — additional to normal
inode-based attributes. xattrs are designed as a filesystem-independent way of adding functionality
such as POSIX ACLs. POSIX ACLs can, for example, control file access permissions in a much
more fine-grained way than traditional Unix permissions, for example:

prompt> getfacl lgtoclnt-7.1.2-1.i686.rpm
file: lgtoclnt-7.1.2-1.i686.rpm
owner: root
group: root
user::rw-
group::r--
mask::r--
other::r--

prompt> setfacl -m u:zzcgupa:r lgtoclnt-7.1.2-1.i686.rpm

prompt> getfacl lgtoclnt-7.1.2-1.i686.rpm
file: lgtoclnt-7.1.2-1.i686.rpm
owner: root
group: root
user::rw-
user:zzcgupa:r--
group::r--
mask::r--
other::r--
prompt>

Note that the existence of such ACLs are hinted at in the traditional Unixls output by a+:

prompt> ls -l lgtoclnt-7.1.2-1.i686.rpm
-rw-r--r--+ 1 root root 14473581 Sep 30 2005 lgtoclnt-7.1.2-1.i686.rpm

For more on xattr and POSIX ACLs seeman 5 acl, man 3 getfacl andman 3 setfacl.

Question: Does the VFS API require xattr support?

3 http://www.cse.unsw.edu.au/~neilb/oss/linux-commentary/vfs.html
4 http://www.tldp.org/LDP/khg/HyperNews/get/fs/vfstour.html

8

Unix and Linux Security: LIDS

4.6.5. LIDS File ACLs
LIDS uses its own brand of file ACLs in the kernel — they are integrated into the VFS and so do not
depend on the filesystem type (though LIDS requires xattrs and not all filesystems support these).

LIDS File ACLs are enforced as soon as the system boots, though can be turned off in a LIDS-free
session (or if LIDS is switched off globally).

There are four types of LIDS File ACLs:

• DENY — the existence of the object is denied by the kernel;

• READONLY — the object is accessible read-only;

• APPEND — the object is read-accessible and can be appended to, but cannot be written to in any
other way;

• WRITE — the object is read/write-accessible (i.e., not protected by LIDS at all).

4.7. Viewing File ACLs

To view the current set of LIDS File ACLs issuelidsconf -L, e.g.,

prompt> lidsconf -L
Subject ACCESS inherit Object

--
Any file READONLY: 0 /sbin

Any file READONLY: 0 /bin

Any file READONLY: 0 /boot

Any file READONLY: 0 /lib

Any file READONLY: 0 /usr

Any file READONLY: 0 /etc

Any file DENY: 0 /etc/lids

Any file DENY: 0 /etc/shadow

Any file APPEND: 0 /var/log

Any file WRITE: 0 /var/log/wtmp

/bin/login READONLY: 0 /etc/shadow

/bin/su READONLY: 0 /etc/shadow
/bin/login GRANT: 0 CAP_SETUID

/bin/su GRANT: 0 CAP_SETUID

N.B. This commandlists the rules listed in/etc/lids/lids.conf, not those currently enforced
— to be enforced such rules need to have been compiled and loaded by the kernel (seeAdding File
ACLs[Page 9], below).

4.8. Adding File ACLs

The simplest way to add a rule is to specify an object and the associated permissions, e.g.,

lidsconf -A -o /etc/shadow -j DENY

The ACL above states that nothing can access/etc/shadow in any way. A subject can also be
specified, e.g.,

lidsconf -A -s /bin/login -o /etc/shadow -j READONLY

9

Unix and Linux Security: LIDS

The above ACL states that/bin/login has read-only access to/etc/shadow.

We now have two rules which apply to/etc/shadow. When faced with two rules which could apply
to access to a file, LIDS picks the most specific, thus the second rule is an exception to the first as you
might expect.

The above rules are not yet not yet enforced; the rules must be compiled

lidsconf -C

and then the newly-compiled configuration loaded lidsadm -S – +RELOAD_CONF </PRE> into the
kernel.

4.9. Protect Your Subjects

LIDS has a certain amount of intelligence built in — it will not let you create exceptions (see above)
if the subject itself is not protected. For example, assuming the rule-set listed above,

prompt> lidsconf -A -s /home/simonh/bin/shell -o /var/log/wtmp -j WRITE

lidsconf: You must protect the subject file /home/simonh/bin/shell or \
its directory as READONLY or DENY.

but

prompt> lidsconf -A -o /home/simonh/bin/shell -j READ

prompt> lidsconf -A -s /home/simonh/bin/shell -o /var/log/wtmp -j WRITE
prompt>

4.10. Inode-Based — Update Your File ACL Configuration After Changes

. . . for example, after patching the system and after adding new users, in fact after any changes to
files with associated LIDS File ACLs.

LIDs maintains its File ACLs using the filsystem, referenced by major and minor device
numbers, and the file’s inode number, rather than the path and filename. (See the contents of
/etc/lids/lids.conf [Page 38], for example.) The inode of a file will likely change whenever the
file is changed, e.g., when adding a user to/etc/passwd and/etc/shadow, or when patching the
system.

To update the inodes held by LIDS:

lidsadm -U
lidsadm -S -- +RELOAD_CONF

4.11. LIDS States and ACL Types: BOOT, GLOBAL, POSTBOOT and SHUTDOWN

LIDS operates in one of three states:BOOT, POSTBOOT andSHUTDOWN — each state has its own set of
ACLs, i.e., one can configure one set of rules appropriate for the boot process, a second for normal
operation,POSTBOOT, and a third set for shutting the system down. When adding (or deleting) an
ACL, either a particular state is specified, or the ACL is assumed to beGLOBAL, i.e., persist across all
states.

10

Unix and Linux Security: LIDS

4.11.1. Switching from BOOT to POSTBOOT
After booting — after all startup scripts in/etc/init.d/rc[2|3|5].d have run — a LIDS-enabled
kernel is in theBOOT state. The usual process is to “seal” the kernel and switch to thePOSTBOOT state
by issuing the command

lidsadm -I

though one can simply switch states via

lidsadm -S -- +POSTBOOT

and entering the LIDS password when prompted. It is a good idea to create a suitable startup script
[Page 38] and sym-link it appropriately in order to issuelidsadm -I automatically at the end of the
boot sequence.

4.11.2. Switching from POSTBOOT to SHUTDOWN
Before shutting down the machine, assuming appropriateSHUTDOWN ACLs have been configured,
switch state:

lidsadm -S -- +SHUTDOWN

It is a good idea to have aninit script [Page 38] run this command.

4.12. Listing ACLs

For example

prompt> lidsconf -L

Subject ACCESS inherit Object
--

Any file READONLY: 0 /sbin

Any file READONLY: 0 /bin

Any file READONLY: 0 /boot

Any file READONLY: 0 /lib

Any file READONLY: 0 /usr
.
.

theglobalACLs prevent any programme from writing to/lib, but

prompt> lidsconf -L BOOT

Subject ACCESS inherit Object
--

Any file READONLY: 0 /sbin/depmod

Any file READONLY: 0 /lib

/sbin/depmod WRITE: 0 /lib

11

Unix and Linux Security: LIDS

during the boot process/sbin/depmod is allowedWRITE access to/lib. This is removed in the
POSTBOOT state:

prompt> lidsconf -L POSTBOOT

Subject ACCESS inherit Object
--

4.13. Adding ACLs

When adding an ACL it is by default global (persists across all states)

lidsconf -A -s <subject> -o <object> -j <action>

but an ACL type can be specified, e.g.,

lidsconf -A BOOT -s <subject> -o <object> -j <action>

In most (all?) examples in this section,Quick Start, we do not specifyacl_type so our ACLs are
GLOBAL, i.e., apply to all states.

4.14. Unix Capabilities

Traditionally, the Unixroot user is all-powerful;Capabilitiesare a more fine-grained approach.
(Unix Capabilities are described in the POSIX 1003.1e draft, which unfortunately has not become a
standard.)

In the Capability model, permissions are categorised — some examples are:

CAP_KILL Allow signals to be sent to processes you don’t own.

CAP_LINUX_IMMUTABLE Allow modification of immutable
and append file attributes.

CAP_SETUID Allow unrestricted setuid.

CAP_SYS_CHROOT Allow use of chroot.

In a default Linux kernelroot-owned processes are granted all Capabilities, while other processes
are granted none, having access based on such things as uid restrictions and/or file permissions.
Question: In fact in a LIDS-enabled kernel onlyroot-owned processes are granted Capabilities,
yes?

For a more complete list and details of each capability, seeLIDS Capability ACLs[Page 26], below.
For a definitive list of Capabilities, see/usr/include/linux/capability.h.

12

Unix and Linux Security: LIDS

4.15. LIDS Capability ACLs

LIDS extends the Capability model in two ways. First, you can remove a Capability from the
Bounding Set(i.e., evenroot-owned processes cannot use that Capability) then later replace that
Capability — with a standard kernel such replacement is not possible. Secondly, Capabilities can be
granted on a programme-by-programme basis, allowing for fine-grained capability access-control.

LIDS Capability ACLs are not enforced after boot, but after the commandlidsadm -I is issued,
i.e., after changing fromBOOT state toPOSTBOOT state.

4.16. Global Capability ACLs

The Capability Bounding Set— in LIDS the default Capabilities — for a LIDS-enabled
kernel is configured by manually editing/etc/lids/lids.cap (or /etc/lids/lids.boot.cap,
/etc/lids/lids.postboot.cap, or /etc/lids/lids.shutdown.cap, settings in which override
those inlids.cap, in the corresponding state).

Question: Is the previous sentence (e.g., settings inlids.boot.cap override those inlids.cap in
theBOOT state) correct?

A fragment of (one of) the file(s) could look like this:

5: Overrides the restriction that the real or effective user ID of a
5: process sending a signal must match the real or effective user
5: ID of the process receiving the signal.
#
+5:CAP_KILL

6: - Allows setgid(2) manipulation

6: - Allows setgroups(2)
6: - Allows forged gids on socket credentials passing.
#
+6:CAP_SETGID

7: - Allows set*uid(2) manipulation (including fsuid).
7: - Allows forged pids on socket credentials passing.
#
-7:CAP_SETUID

8: Transfer any capability in your permitted set to any pid, remove
8: any capability in your permitted set from any pid.
#
-8:CAP_SETPCAP

9: Allow modification of S_IMMUTABLE and S_APPEND file attributes.
#
+9:CAP_LINUX_IMMUTABLE

10: Allows binding to TCP/UDP sockets below 1024.
#
+10:CAP_NET_BIND_SERVICE

13

Unix and Linux Security: LIDS

The general format is

anything after a "#" is a comment

[+-]:CAP_NAME

• +CAP_NAME indicates that the capability is left in the bounding set and processes running asroot

have that capability.

• -CAP_NAME indicates that the capability is not available to any processes (unless a Capability
Exception [Page 14] has been granted).

4.17. Viewing Capability ACLs

To see the current Capability Bounding Set issue

lidsadm -V

To see the Capabilities granted on a programme-by-programme basis, issue

lidsconf -L

in a LIDS-free session.

4.18. Adding LIDS Capability ACLs — Granting Capability Exceptions

Adding (granting) a LIDS Capability to a programme is similar to adding a File ACL, for example

lidsadm -S -s /bin/login -o CAP_SETUID -j GRANT

The above ACL states that/bin/login is granted theCAP_SETUID Capability.

Above we have allowed/bin/login access to theCAP_SETUID on a per-programme basis. This
overrides the Capability Bounding Set and is therefore called a Capability Exception.

(Here we are assuming that-7:CAP_SETUID appears in the prevailing Capability configuration file
— after booting and issuinglidsadm -I this would be/etc/lids/lids.postboot.cap.)

5. Tweaking ACLS — An Example: The OpenSSH Server
After booting a freshly-installed LIDS-enabled system, issuinglidsadm -I and attemping
to access it remotely via SSH, with the OpenSSH daemon running, access is denied with
Read from socket failed: Connection reset by peer; the following appears on the console
(or /var/log/syslog and/or/var/log/kern.log, depending on yoursyslog configuration):

Apr 10 17:21:21 pinback kernel: LIDS: sshd (dev 3:11 inode 32098) \

pid 3536 ppid 3535 uid/gid (0/65534) on (tty) : \
violated CAP_SETUID

14

Unix and Linux Security: LIDS

So we allow this capability:

lidsadm -S -- -LIDS
lidsconf -A -s /usr/sbin/sshd -o CAP_SETUID -j GRANT
lidsconf -C
lidsadm -S -- +RELOAD_CONF
lidsadm -S -- +LIDS

This time access is denied withPermission denied, please try again, correct credentials, or
not, and the following appears on the console (or in thesyslogs):

Apr 11 13:01:01 pinback kernel: LIDS: sshd (dev 3:11 inode 32098) \

pid 3275 ppid 3217 uid/gid (0/0) on (tty) : \
attempt to open shadow for reading

Following the same procedure as above but replacing the capability-granting line with

lidsconf -A -s /usr/sbin/sshd -o /etc/shadow -j READONLY

solves our problem — remote access via OpenSSH is not possible.

For interest, these lines are added to/etc/lids/lids.conf:

32098:779:/usr/sbin/sshd:16:0:-1:7:CAP_SETUID:0-0
32098:779:/usr/sbin/sshd:1:0:33191:778:/etc/shadow:0-0

6. LIDS ACL Inheritance
Sometimes it is useful for a programme to pass its permissions along to programmes it calls — this
is common with scripts which call system binaries.

Consider syslog rotation, often called each night as acron job. In general, it should be possibly to
append to syslog logs, only:

logconf -A -o /var/log -j APPEND

but/etc/cron.daily/logrotate requiresWRITE access

lidsconf -A -s /etc/cron.daily/logrotate -o /var/log -j WRITE

After adding this ACL, compiling and reloading the configuration, a call to this script fails:

error: failed to rename /var/log/exim4/mainlog to /var/log/exim4/mainlog.1: Operation not permitted

error: error creating /var/log/exim4/mainlog: Operation not permitted
.
.

A look at the script reveals why:

#!/bin/sh

test -x /usr/sbin/logrotate || exit 0

/usr/sbin/logrotate /etc/logrotate.conf

15

Unix and Linux Security: LIDS

The script is simply a wrapper for/usr/sbin/logrotate. We want the latter toinherit WRITE
permission from the script. Therefor we use this ACL instead

lidsconf -A -s /etc/cron.daily/logrotate -o /var/log -i 1 -j WRITE

The-i 1 option means that/etc/cron.daily/logrotate’s children inherit its ACLs, but not its
grandchildren — use-i 2 for that; use-i <n> for n levels of inheritance. For unlimited inheritance
specify-i -1.

7. LIDS Things Not To Forget

Update your inode references

Remember to update the inodes [Page 10] held by LIDS after patching or adding users to the
system, or making other changes.

Switch to POSTBOOT and \seal" the kernel
. . .after the boot sequence finishes:

lidsadm -I

8. LIDS Command-Line Tools — Examples and Usage
The user-space tools for configuring and administering a LIDS-enabled kernel arelidsconf and
lidsadm.

8.1. lidsconf
All the information contained in this section is available from theman page for lidsconf
(man 8 lidsconf) or from command-line help (standard:lidsconf -h, or more information:
lidsconf -H).

16

Unix and Linux Security: LIDS

8.1.1. Examples

lidsconf -A BOOT -o /var/log/message -j APPEND

Protects/var/log/message as append only in BOOT state.

lidsconf -A POSTBOOT -o /sbin/test -j IGNORE

Specifies that the read-only protection of/sbin doesn’t apply to/sbin/test in POSTBOOT
state.

lidsconf -A POSTBOOT -o /etc/shadow -j DENY

Make/etc/shadow hidden from everyone only in BOOT state. Nothing can see the file (open,
stat,..).

lidsconf -A POSTBOOT -s /bin/login -o /etc/shadow -j READ

Allows the/bin/login program to read the/etc/passwd even though it has been defined as
hidden above. In this case, only/bin/login can read/etc/passwd. No other program or user
can see the file (/etc/passwd).

lidsconf -A -s /usr/sbin/httpd -o /home/httpd -j READ

Protects the server root of a web server (/home/httpd) as DENY. . .

lidsconf -A -s /usr/sbin/httpd -o CAP_NET_BIND_SERVICE 80 -i -1 -j GRANT

. . .and allow only the httpd binary (/usr/sbin/httpd) to read the server root (/home/httpd),
and thehttpd can only bind to port 80.

lidsconf -A SHUTDOWN -s /bin/program -i 2 -o CAP_NET_ADMIN -j GRANT

Grant the/bin/program the capability ofCAP_NET_ADMIN, and the inheritance level is 2 only
in SHUTDOWN state.

lidsconf -A -s /usr/X11/bin/XF86_SVGA -o CAP_SYS_RAWIO -j GRANT

Grants the programXF86_SVGA the capability ofCAP_SYS_RAWIO if the CAP_SYS_RAWIO has
been disabled in/etc/lids/lids.cap.

8.1.2. Usage

lidsconf -A [acl_type] [-s subject] -o object [-d] [-i level] -j ACTION
lidsconf -C
lidsconf -D [acl_type] [-s file] [-o file]

lidsconf -Z [acl_type]
lidsconf -U
lidsconf -L [acl_type] [-e]
lidsconf -P
lidsconf -S [acl_type]
lidsconf -v
lidsconf -[h|H]

17

Unix and Linux Security: LIDS

where

-A, --add To add an entry
-C, --check To check all entries
-D, --delete To delete an entry
-Z, --zero To delete all entries
-U, --update To update dev/inode numbers
-L, --list To list all entries
-P, --passwd To set a new password
-S, --script To write a script for all entries
-v, --version To show the version
-h, --help To list this help

-H, --morehelp To list this help with CAP/SOCKET name

and

-s, --subject subj
can be any program, must be a file

-o, --object [obj]
can be a file, directory or Capability, Socket Name

andACTION can be

-j, --jump

DENY deny access
READONLY read only
APPEND append only
WRITE writable
GRANT grant capability to subject
IGNORE ignore any permissions set on this object
DISABLE disable some extension feature

Finally:

-i, --inheritance Inheritance level
-e, --extended Extended list

8.2. lidsadm
All the information contained in this section is available from theman page for lidsadm
(man 8 lidsadm) or from command-line help (lidsconf -h).

18

Unix and Linux Security: LIDS

8.2.1. Examples

lidsadm -I

Seal the kernel with the default capabilities set in/etc/lids/lids.cap. You should edit that
file manually.

lidsadm -S -- -LIDS

Switch to a LIDS-free session.

lidsadm -S -- -LIDS_GLOBAL

Switch LIDS off across the system — your system is no longer protected by LIDS.

lidsadm -S -- +SHUTDOWN

Switch to hte SHUTDOWN state.

lidsadm -S -- +ACL_DISCOVERY

Turn on the ACL discovery mode.

8.2.2. Usage

lidsadm -[S|I] -- [+|-][LIDS_FLAG] [...]
lidsadm -V
lidsadm -h

where

-S To submit a password to switch some protections

-I To switch some protections without submitting password (sealing time)

-V To view current LIDS state (caps/flags)
-v To show the version
-h To list this help

and the available LIDS flags are

LIDS de-/activate LIDS locally (the shell & childs)

LIDS_GLOBAL de-/activate LIDS entirely

RELOAD_CONF reload config. file and inode/dev of protected programs

POSTBOOT de-/activate LIDS learning mode

SHUTDOWN de-/activate LIDS learning mode

ACL_DISCOVERY de-/activate LIDS learning mode

9. LIDS ACL Initialisation Script
It is not practical to enter a complete set of ACLs at the shell prompt; a better approach is to store
ACLs in a shell-script. After initialising ACLs from such a script, the rules “compiled” and stored in
/etc/lids/*.acl for future system boots.

(The script below is not/sbin/init script— see above for one of those [Page 38].)

19

Unix and Linux Security: LIDS

#!/bin/sh

-- Check where we’re running :

echo " "
echo " Is the kernel LIDS-enabled?"
echo " Is \"lidsconf -I\" done?"
echo " Is this a LIDS-free session?"
echo " "

echo -n " If yes, yes and yes, enter \"yes\" : "

read user_response

if [! "$user_response" = "yes"]
then

echo "Answer not equal to \"yes\", so exiting."
exit 1

fi

-- Clean out the bath before using it :

echo " "
echo " ...should be okay to ignore any "

echo " \"lidsconf: the file does not exist in the acl file\""
echo " message here..."
echo " "

lidsconf -D SHUTDOWN
lidsconf -D POSTBOOT
lidsconf -D BOOT
lidsconf -D

...deletes all current ACLs (if there are currently no ACLs, may get
error "lidsconf: the file does not exist in the acl file" which
can safely be ignored)

echo " ...end ignore."
echo " "

-- ACLs, GLOBAL --- system-wide stuff :

lidsconf -A -o /bin -j READONLY

lidsconf -A -o /boot -j READONLY

lidsconf -A -o /etc -j READONLY

lidsconf -A -o /lib -j READONLY

lidsconf -A -o /sbin -j READONLY

lidsconf -A -o /usr -j READONLY

-- ACLs, GLOBAL --- /etc :

lidsconf -A -o /etc/lids -j DENY

lidsconf -A -o /etc/shadow -j DENY

lidsconf -A -s /bin/login -o /etc/shadow -j READONLY

lidsconf -A -s /bin/su -o /etc/shadow -j READONLY

lidsconf -A -s /sbin/sulogin -o /etc/shadow -j READONLY

lidsconf -A -s /usr/sbin/sshd -o /etc/shadow -j READONLY

-- ACLs, GLOBAL --- /var :

lidsconf -A -o /var/log -j APPEND

lidsconf -A -o /var/log/wtmp -j WRITE

lidsconf -A -o /usr/sbin/logrotate -j READONLY

lidsconf -A -o /etc/cron.daily/logrotate -j READONLY

lidsconf -A -s /etc/cron.daily/logrotate -o /var/log -i 1 -j WRITE

-- ACLs, GLOBAL --- SETUID :

#
...check CAP_SETUID for POSTBOOT...
#
export CAP_SETUID_STATUS=‘fgrep CAP_SETUID /etc/lids/lids.postboot.cap‘
#
if [! "$CAP_SETUID_STATUS" = "-7:CAP_SETUID"]
then

echo "POSTBOOT CAP_SETUID (lids.postboot.cap) is not set \"-\" (off) "
exit 1

else
echo "POSTBOOT CAP_SETUID STATUS : \"$CAP_SETUID_STATUS\" is ok!"

fi

lidsconf -A -s /bin/login -o CAP_SETUID -j GRANT

lidsconf -A -s /bin/su -o CAP_SETUID -j GRANT

lidsconf -A -s /usr/sbin/sshd -o CAP_SETUID -j GRANT
...these can be POSTBOOT if there is a init script to issue "lidsadm -I"
at the end of the boot sequence...

-- ACLs, BOOT :

#
...during BOOT state, /lib is READONLY except for /sbin/depmon, and
"protect our subject" during this time...
#
lidsconf -A BOOT -o /sbin/depmod -j READONLY
#
lidsconf -A BOOT -o /lib -j READONLY

lidsconf -A BOOT -s /sbin/depmod -o /lib -j WRITE

#
...allow???
#
lidsconf -A BOOT -o /sbin/logsave -j READONLY
#
lidsconf -A BOOT -s /sbin/logsave -o /var/log/fsck/checkroot -j WRITE

lidsconf -A BOOT -s /sbin/logsave -o /var/log/fsck/checkfs -j WRITE

-- ACLs, SHUTDOWN :

lidsconf -A SHUTDOWN -s /bin/mount -o /etc/mtab -j WRITE

-- compile and load :

echo " "
echo "All ACLs added..."
echo "Compiling ACLs... "
echo " "
lidsconf -C
echo " ...ACLs compiled"
echo " "
echo "Reloading CONF..."
lidsadm -S -- +RELOAD_CONF
echo " ...CONF reloaded"
echo " "

-- have a nice mug of tea :

#

20

Unix and Linux Security: LIDS

10. Miscellaneous LIDS Features/Examples

10.1. Protect Filesystem Devices

LIDS File ACLs protect access to files through the normal channels — using path and filename.
However, such channels can be circumvented by reading from or writing to mounted block devices
(e.g.,/dev/hda1) directly. To prevent such access set

-17:CAP_SYS_RAWIO

in /etc/lids/lids.cap and/etc/lids/lids.*.cap.

It is rare that Capability Exceptions to this need to be granted; most commonly such exceptions are
for X servers or “multimedia</C> software (e.g.,xmms may access your CD-ROM via/dev/hd?
rather than/mnt/cdrom).

10.2. CAP_BIND_NET_SERVICE

In “vanilla” kernels any programme with theCAP_BIND_NET_SERVICE capability can bind to a port
number less than 1024. The capability is extended in LIDS-enabled kernels to allow particular ports,
or a port range, to be specified. For example

lidsadm -A -s /usr/sbin/httpd -o CAP_BIND_NET_SERVICE -j GRANT

allowshttpd to bind to any port, but

lidsadm -A -s /usr/sbin/httpd -o CAP_BIND_NET_SERVICE 80-80, 443-443 -j GRANT

lidsadm -A -s /usr/local/sbin/httpproxy -o CAP_BIND_NET_SERVICE 80-88 -j GRANT

allow httpd to bind to its standard ports only andhttpproxy to bind to ports in the range 80 to 88
(inclusive).

10.3. Prevent Processes Being Killed

Using the LIDS-specific capability,CAP_PROTECTED, a process (daemon) can be protected from
userspace signals — such processes cannot therefore be killed. This is useful for protecting
monitoring and intrusion-detection tools! Example:

root> lidsadm -S -- -LIDS
root> lidsconf -A -s /usr/bin/yes -o CAP_PROTECTED -j GRANT
root> lidsconf -C
root> lidsadm -S -- +RELOAD_CONF
root> lidsadm -S -- +LIDS

21

Unix and Linux Security: LIDS

Now run/usr/bin/yes in another terminal.

root> ps auxww | grep yes

root 3712 13.8 0.0 1876 456 pts/0 R+ 12:38 0:02 yes
root> kill 3712
bash: kill: (3712) - Operation not permitted
root> lidsadm -S -- -LIDS
root> kill 3712
root> ps auxww | grep yes
root>

N.B. Remember that onlyroot processes have Capabilitiesso you cannot protect non-root-owned
processes/daemons in this way. For example,exim4 drops isroot privilege after binding to port 25
and so cannot be protected.Question: Is this paragraph correct?

11. LIDS ACL Discovery

12. LIDS and Patching
Daily (nightly) cron-driven patching does not sit well with LIDS. The only practical approach is
to temporarily disable LIDS, patch and then immediately re-enable the system. The script below
will does exactly this for a Debian system,but should NOT be used as issince it contains the LIDS
password in plain text. Usage:

1. replace<password> with the actual LIDS password;

2. encrypt/compile the script usingshc, the shell script compiler5 written by FJR Garcia;

3. run the encrypted/compiled script viacron to patch daily/nightly.

5 http://www.datsi.fi.upm.es/~frosal/

22

Unix and Linux Security: LIDS

#!/bin/bash

#
1. Runs "apt-get update" and "apt-get --download-only upgrade" before
issuing "lidsadm -S -- -LIDS_GLOBAL", then "apt-get -u upgrade" and
finally "lidsadm -S -- +LIDS_GLOBAL", thus minimising the time
for which LIDS is disabled.
#
2. Creates temporary expect scripts to temporarily disable and later
enable LIDS.
#

-- update : --
#
/usr/bin/apt-get update

...writes to /var/cache/apt/pkgcache.bin
srcpkgcache.bin

-- download : --
#
/usr/bin/apt-get --download-only upgrade

...writes to /var/cache/apt/archives/

-- create expect script to enable LIDS : -------------------------------------
#
echo "#!/usr/bin/expect" > /tmp/simonh.simonh

echo " " >> /tmp/simonh.simonh

echo "set timeout 5000 " >> /tmp/simonh.simonh

echo " " >> /tmp/simonh.simonh

echo "spawn lidsadm -S -- -LIDS_GLOBAL" >> /tmp/simonh.simonh

echo "expect \"password: \"" >> /tmp/simonh.simonh

echo "send \"<password>\r\"" >> /tmp/simonh.simonh

echo "expect \"changed.\"" >> /tmp/simonh.simonh

echo "exit" >> /tmp/simonh.simonh

-- switch to "-LIDS_GLOBAL" : --
#
chmod 700 /tmp/simonh.simonh

/tmp/simonh.simonh

rm -f /tmp/simonh.simonh

-- install : ---
#
/usr/bin/apt-get -y upgrade

-- create expect script to disable LIDS : ------------------------------------
#
echo "#!/usr/bin/expect" > /tmp/simonh.simonh

echo " " >> /tmp/simonh.simonh

echo "set timeout 5000 " >> /tmp/simonh.simonh

echo " " >> /tmp/simonh.simonh

echo "spawn lidsadm -S -- +LIDS_GLOBAL" >> /tmp/simonh.simonh

echo "expect \"password: \"" >> /tmp/simonh.simonh

echo "send \"<password>\r\"" >> /tmp/simonh.simonh

echo "expect \"changed.\"" >> /tmp/simonh.simonh

echo "exit" >> /tmp/simonh.simonh

-- switch to "+LIDS_GLOBAL" : --
#
chmod 700 /tmp/simonh.simonh

/tmp/simonh.simonh

rm -f /tmp/simonh.simonh

23

Unix and Linux Security: LIDS

</IMP>

13. LIDS Sockets
Question: cf. lidsconf -H. . .

14. LIDS Example ACLs
The LIDS Wiki6 contains a section with example ACLs7.

15. LIDS Sandbox Capabilities — Trusted Domain Enforcement
The LIDS Wiki8 contains a section describing LIDS Trusted Domain Enforcement in detail9.

16. LIDS How-Tos, FAQs and Troubleshooting

16.1. Visibility of /etc/lids

Sometimes/etc/lids is visible — it shouldn’t be!

/etc/lids is visible inBOOT mode; it is not visible inPOSTBOOTmode, so check you have switched
(e.g.,lidsadm -I). The directory is also visible in a LIDS-free session.

16.2. LIDS Password/Authentication Oddities

16.2.1. lidsadm -S... works the second time but not the first!
For example, withlidsadm -S -- -LIDS, it fails with “switching lids failed” the first time, but
a second time it works fine with “no global capabilities changed”. This is because you need to
be in POSTBOOT mode — this is usually reached vialidsadm -I, but lidsadm -S..., even a
non-authenticated failure, changes mode toPOSTBOOT.

16.2.2. Sometimes the wrong password is accepted!
Change toPOSTBOOT mode — uselidsadm -I.

16.2.3. It just doesn’t work what ever I do!
Okay, you’ve installedlidstools without an apparent hitch, setting the password when prompted,
but no matter what you do,lidsadm -S won’t authenticate — you’ve even tried un-installing
lidstools and re-installed, to no avail.

6 http://wiki.lids.org
7 http://wiki.lids.org/index.php/LIDS_2.2_ACLs
8 http://wiki.lids.org
9 http://wiki.lids.org/index.php/LIDS_Trusted_Domain_Enforcement

24

Unix and Linux Security: LIDS

Check you have the extended attributes set in your kernel

CONFIG_EXT3_FS=y # ...and/or EXT2, depending on /etc/fstab
CONFIG_EXT3_FS_XATTR=y
CONFIG_EXT3_FS_POSIX_ACL=y
CONFIG_EXT3_FS_SECURITY=y

and that filesystems are mounted using these — ensureacl is included under the mount options in
/etc/fstab and thatmount shows this:

prompt> mount

/dev/hda10 on / type ext3 (rw,acl,errors=remount-ro)

proc on /proc type proc (rw)
.
.
prompt>

25

Unix and Linux Security: LIDS

17. LIDS Discontinued Features

Portscan Detector

This has been removed.

Time-Dependent ACLs

Before LIDS v2.2 it was possible to for ACLs to be time-dependent, for example

lidsconf -A -s /usr/sbin/cron -o /var/log -t 0018-0019 -i 2 -j WRITE

would allowcron to write to/var/log between 00:18 and 00:19. (-i 2 allowslogrotate and
its children write access; directly granting write access tologrotate would be a mistake — this
would allow an intruder to repeatedly rotate logs. . .)

CAP_HIDDEN

This was a LIDS-specific Capability. A process with this Capability was not visible in/proc

(and thus not available tops, etc.). But:

> sorry, CAP_HIDDEN will not be working on LIDS 2.2.x..Smile This is because
> LSM do not provide the nesseary hooks that we can use to hide files as

> well as the process(via /proc file system).
>
> I will removed the CAP_HIDDEN in source and lidstools to let is obsoleted.
>
> Thanks,
> huagang

It is no longer possible to hide a process using LIDS functionality. Other kernel-patches exist
(e.g., GR Security) which prevent users from seeing processes other than their own. To hide
particular processes from all users (including root), use a specially-crafted kernel module — a
root kit!

CAP_INIT_KILL

This was a LIDS-specific Capability. It has been replaced byCAP_PROTECTED (another
LIDS-specific Capability).

CAP_KILL_PROTECTED

This was a LIDS-specific Capability. It allowed programmes to killCAP_PROTECTED processes.

18. Unix/LIDS Capabilities
This list is based on the declaration of*lids_caps_desc[]from lids_cap.c, from LIDS
v2.2.2-2.6.14, and from theman page forcapabilities(7), rather than the LIDSman pages,
lidsconf -H, or other LIDS documentation, which is sometimes out of date.

26

Unix and Linux Security: LIDS

CAP_AUDIT_CONTROL

Enable and disable kernel auditing; change auditing filter rules; retrieve auditing status and
filtering rules.

CAP_AUDIT_WRITE

Allow records to be written to kernel auditing log.

CAP_CHOWN

Allow arbitrary changes to file UIDs and GIDs (seechown(2), chgrp(2))

CAP_DAC_OVERRIDE

Bypass file read, write, and execute permission checks. (DAC = "discretionary access control".)

CAP_DAC_READ_SEARCH

Bypass file read permission checks and directory read and execute permission checks.

CAP_FOWNER

Bypass permission checks on operations that normally require the file system UID of the
process to match the UID of the file (e.g.,chmod(2), utime(2)), excluding those operations
covered by theCAP_DAC_OVERRIDE and CAP_DAC_READ_SEARCH; set extended file attributes
(seechattr(1)) on arbitrary files; set Access Control Lists (ACLs) on arbitrary files; ignore
directory sticky bit on file deletion; specifyO_NOATIME for arbitrary files inopen(2) and
fcntl(2).

CAP_FSETID

Don’t clear set-user-ID and set-group-ID bits when a file is modified; permit setting of the
set-group-ID bit for a file whose GID does not match the file system or any of the supplementary
GIDs of the calling process.

CAP_IPC_LOCK

Permit memory locking (cf.mlock(2), mlockall(2), mmap(2) andshmctl(2))

CAP_IPC_OWNER

Bypass permission checks for operations on System V IPC objects.

CAP_KILL

Bypass permission checks for sending signals (seekill(2)). This includes use of the
KDSIGACCEPT ioctl.

CAP_LEASE

Allow file leases to be established on arbitrary files (seefcntl(2)).

CAP_LINUX_IMMUTABLE

Allow setting of the EXT2_APPEND_FL and EXT2_IMMUTABLE_FL (and EXT3_ filesystem
attributes (seechattr(1)).

CAP_MKNOD

Allow creation of special files usingmknod(2).

CAP_NET_ADMIN

Allow various network-related operations (e.g., setting privileged socket options, enabling
multicasting, interface configuration, modifying routing tables).

27

Unix and Linux Security: LIDS

CAP_NET_BIND_SERVICE

Allow binding to Internet domain reserved socket ports (port numbers less than 1024).

CAP_NET_BROADCAST

Allow socket broadcasting, and listening multicasts.

CAP_NET_RAW

Permit use ofRAW andPACKET sockets.

CAP_PROTECTED (specific to LIDS)

Protect the process from signals.
Question: CAP_KILL vs CAP_PROTECTED?

CAP_SETGID

Allow arbitrary manipulations of process GIDs and supplementary GID list; allow forged GID
when passing socket credentials via Unix domain sockets

CAP_SETPCAP

Grant or remove any capability in the caller’s permitted capability set to or from any other
process.

CAP_SETUID

Allow arbitrary manipulations of process UIDs (setuid(2), setreuid(2), setresuid(2),
setfsuid(2)); allow forged UID when passing socket credentials via Unix domain sockets.

CAP_SYS_ADMIN

Permit a range of system administration operations including:quotactl(2), mount(2),
umount(2), swapon(2), swapoff(2), sethostname(2), setdomainname(2), IPC_SET and
IPC_RMID operations on arbitrary System V IPC objects; perform operations on trusted and
security Extended Attributes (seeattr(5)); call lookup_dcookie(2); perform keyctl(2)

KEYCTL_CHOWN and KEYCTL_SETPERM operations; allow forged UID when passing socket
credentials; exceed/proc/sys/fs/file-max, the system-wide limit on the number of open
files, in system calls that open files (e.g.,accept(2), execve(2), open(2), pipe(2); without
this capability these system calls will fail with the errorENFILE if this limit is encountered).

CAP_SYS_BOOT

Permits calls toreboot(2) andkexec_load(2).

CAP_SYS_CHROOT

Permits calls tochroot(2)

CAP_SYS_MODULE

Allow loading and unloading of kernel modules; allow modifications to capability bounding set
(seeinit_module(2) anddelete_module(2)).

CAP_SYS_NICE

Allow raising process nice value (nice(2), setpriority(2)) and changing of the nice value
for arbitrary processes; allow setting of real-time scheduling policies for calling process, and
setting scheduling policies and priorities for arbitrary processes (sched_setscheduler(2),
sched_setparam(2)); set CPU affinity for arbitrary processes (sched_setaffinity()); use
theMPOL_MF_MOVE_ALL with mbind(2).

28

Unix and Linux Security: LIDS

CAP_SYS_PACCT

Permit calls toacct(2).

CAP_SYS_PTRACE

Allow arbitrary processes to be traced usingptrace(2)

CAP_SYS_RAWIO

Permit I/O port operations (ioperm(2) andiopl(2)

CAP_SYS_RESOURCE

Permit: use of reserved space on Ext2 file systems;ioctl(2) calls controlling Ext3 journaling;
disk quota limits to be overridden; resource limits to be increased (seesetrlimit(2));
RLIMIT_NPROC resource limit to be overridden;msg_qbytes limit for a message queue to be
raised above the limit in/proc/sys/kernel/msgmnb (seemsgop(2) andmsgctl(2).

CAP_SYS_TIME

Allow modification of system clock (settimeofday(2), adjtimex(2)); allow modification of
real-time (hardware) clock.

CAP_SYS_TTY_CONFIG

Permit calls to vhangup(2).

Question: lids_acl.c refers toCAP_KILL_PROTECTED but this is certainly not available as a
Capability (try it withlidsconf). Is this dead code?

19. LIDS Man Pages: lidsconf
This man page is an updated/corrected version of that which comes withlidstools v2.2.7.

NAME
lidsconf - configuration tool for the Linux Intrusion Detection System

SYNOPSIS

lidsconf -A [acl_type] [-s subject] [-R] -o object [-d] [-i level] -j ACTION
lidsconf -C
lidsconf -D [acl_type] [-s file] [-o file]

lidsconf -Z [acl_type]
lidsconf -U
lidsconf -L [acl_type] [-e]
lidsconf -P
lidsconf -S [acl_type]
lidsconf -v
lidsconf [-h|H]

29

Unix and Linux Security: LIDS

DESCRIPTION

lidsconf is a configuration tool for the Linux Intrusion Detection System

(LIDS).

LIDS is a kernel patch to enhance the current Linux kernel. With LIDS, you can
protect important files, directories, and devices. You can also define ACLs
that restrict the access control on the entire system. For more information

about LIDS, please go to http://www.lids.org.

lidsconf is used to configure the access restriction information for LIDS. All
of the information is stored in
"/etc/lids/lids.conf","/etc/lids/lids.boot.conf","/etc/lids/lids.post-

boot.conf","/etc/lids/lids.shutdown.conf" based on the ACL type.

OPTIONS (ACL’s)

ACL is short for "Access Control List". The ACL in LIDS defines how a subject
can access an object. The subject can be any program file on the system. The

object can be a file, directory, or a special option (MEM devices, RAW IO,

etc). The target defines the access type that the subject has on the object.

The synopsis of the ACL is

[-s subject] [-i TTL] -o object -j TARGET

When a subject is not specified, the ACL defines the object’s default access.

acl_type
acl_type can be "BOOT","POSTBOOT", "SHUTDOWN" or blank which refers to
different acl states, if you do not provide an acl_type the default
value is "GLOBAL" which will apply for all states. For more information
on the LIDS STATEFUL ACL, please check the FAQ under the doc directory.

-s subject

A subject can be any program on the system, such as "/bin/login".

-o object [portscale]

An object can be a file, directory, or a special option (CAP_SYS_RAWIO,

CAP_INIT_KILL, etc). If the object is CAP_NET_BIND_SERVICE, you
must specify the port range. For example, "20-299,400-1002".

30

Unix and Linux Security: LIDS

-i <inheritance level>
This specifies that the ACL is inheritable by the subject’s children.
The inheritance level affects how far the ACL is inherited. An
inheritance level of "-1" means unlimited inheritance. An inheritance
level of 1 means that a child process spawned by the parent which is
not the same program as the parent will inherit the ACL, but a child

process spawned from the child (i.e. a grandchild of the orignal pro-

cess) won’t. The Inheritance level will only affect the children which
are not the same program as its parent. If the child is the same pro-
gram as the parent, it will gain all the permission from its parent.

-j target
The target can be DENY, READ, APPEND, WRITE, or IGNORE for nor-
mal file access ACLs. For a special object, the target can only
be GRANT.

COMMANDS

These options specify the action to perform. Only one command can be
given on the commandline unless otherwise specified.

-A, --add [acl_type]
Add one or more rules to the end of the selected acl_type chain.

-C, --check
Check your LIDS rules and have them compiled. The output of this
command can help in making tighter rules or showing problems
with your current rulebase.

-D, --delete [acl_type]
Delete one or more rules from the selected acl_type.

-Z, --zero [acl_type]
Delete all acl’s from the selected acl_type. If no acl_type is
given then the rules from the GLOBAL acl_type are deleted.

-U, --update
Update your acl’s. If you change or move a file or directory,
it’s inode will change. You the need to update your lids config
with this command

-L, --list [acl_type]
List the acl’s in the selected acl_type.

-P, --passwd
Set a new LIDS password.

31

Unix and Linux Security: LIDS

-S, --script
Write out a script to set your acl’s.

-v, --version
Show the lidsconf version.

-h, --help
Show the lidsconf help.

-H, --morehelp
Show more help options.

AVAILABLE CAPABILITIES

The capabilities used in LIDS are shown below. You can use the
name to enable or disable the capability when sealing and
switching. You can also grant the capability to a program even
if the capability is disabled globally on the system.
.
.

For a list ofAVAILABLE CAPABILITIES, see Capabilities [Page 26], above.

EXAMPLES
.
.

For a list ofEXAMPLES, see Command-Line Tools [Page 17], above.

OTHER SOURCES OF INFORMATION.

Mailing List

To subscribe, unsubscribe, go to: http://lists.source-

forge.net/lists/listinfo/lids-user
To post a message to the list, send an e-mail to: lids-
user@lists.sourceforge.net
Current LIDS archive can be found at:
http://www.geocrawler.com/redir-sf.php3?list=lids-user
An outdated searchable archive can be found at:
http://groups.yahoo.com/group/lids

LIDS FAQ
The LIDS FAQ is located at:
http://www.lids.org/lids-faq/lids-faq.html
or
http://www.roedie.nl/lids-faq

32

Unix and Linux Security: LIDS

BUGS

Any bugs found with LIDS itself should be sent to Xie, Phil, or the

mailing list (lids-user@lists.sourceforge.net). Please include your
.config file used to compile your kernel, and the lids.conf and

lids.cap files located in /etc/lids directory. Any errors found in
this man page should be sent to Sander Klein.

FILES

/etc/lids/lids.ini - LIDS Initial file.
/etc/lids/lids.cap - Defines the global capabilities.

/etc/lids/lids.boot.cap - Defines the BOOT capabilities.

/etc/lids/lids.postboot.cap - Defines the POSTBOOT capabilities.

/etc/lids/lids.shutdown.cap - Defines the SHUTDOWN capabilities.

/etc/lids/lids.pw - Contains the encrypted LIDS password.

SEE ALSO

lidsadm(8)

AUTHORS

Huagang Xie <xie@lids.org>

Philippe Biondi <biondi@cartel-securite.fr>

Manpage written by Sander Klein <roedie@roedie.nl>

DISTRIBUTION

The newest version of LIDS can be obtained from http://www.lids.org/ or

one of it’s mirrors. LIDS is (C) 1999-2004 by Huagang

Xie(xie@lids.org).

20. LIDS Man Pages: lidsadm
This man page is an updated/corrected version of that which comes withlidstools v2.2.7.

NAME
lidsadm - administration tool for the Linux Intrusion Detection System

SYNOPSIS
lidsadm -[S|I] -- [+|-][LIDS_FLAG] [...]
lidsadm -V
lidsadm -h

33

Unix and Linux Security: LIDS

DESCRIPTION

lidsadm is an adminstration tool for the Linux Intrusion Detection System

(LIDS).

LIDS is a kernel patch to enhance the current Linux kernel. With LIDS, you can
protect important files, directories, and devices. You can also define ACLs
that restrict the access control on the entire system. For more information

about LIDS, please go to http://www.lids.org.

lidsadm is used to define ACLs and administer the LIDS protections online.

COMMANDS

Commands define the individual functions of the lidsadm utility. They cannot
be combined.

-S Change LIDS protections (requires your LIDS password).

-I Changes LIDS protections once without a password. This is used to "seal
the kernel" and to switch from the BOOT to the POSTBOOT acl_type.

-V Lets you view the current state of your LIDS system. (this needs to be

built in during compile time)

-v Shows the version of the lidsadm tool.

-h List the help.

LIDS_FLAG’s

There are many flags you can set. They can be used to set or unset capabili-
ties but they can also switch your LIDS system on or off, or to switch into
different states.

AVAILABLE CAPABILITIES

The capabilities used in LIDS are shown below. You can use the name to enable
or disable the capability when sealing and switching. You can also grant the
capability to a program even if the capability is disabled globally on the
system.
.
.

For a list ofAVAILABLE CAPABILITIES, see Capabilities [Page 26], above.

34

Unix and Linux Security: LIDS

AVAILABLE FLAGS

These flags are used with the ADMIN option "-S".

LIDS_GLOBAL
Enable/disable LIDS system-wide.

RELOAD_CONF
Reload config files and inode/dev numbers of special programs.

LIDS Enable/disable LIDS locally (the shell & childs). This is known as a

LIDS free session (LFS).

ACL_DISCOVERY
Enable/disable LIDS ACL Discovery Mode. When this mode is turned on, if
something violates the rules, LIDS will not prevent the action and
print out a rule that you can use in future ACLs. SHUTDOWN Switch to
"SHUTDOWN" State.

EXAMPLES

Here are some examples of using lidsadm.
.
.

For a list ofEXAMPLES, see Command-Lind Tools [Page 19], above.

OTHER SOURCES OF INFORMATION.

Mailing List

To subscribe, unsubscribe, go to: http://lists.source-

forge.net/lists/listinfo/lids-user
To post a message to the list, send an e-mail to: lids-
user@lists.sourceforge.net

Current LIDS archive can be found at: http://www.geocrawler.com/redir-
sf.php3?list=lids-user
An outdated searchable archive can be found at:
http://groups.yahoo.com/group/lids

LIDS FAQ
The LIDS FAQ is located at:
http://www.lids.org/lids-faq.lids-faq.html
or
http://www.roedie.nl/lids-faq/

35

Unix and Linux Security: LIDS

BUGS

Any bugs found with LIDS itself should be sent to Xie, Phil, or the mailing

list (lids-user@lists.sourceforge.net). Please include your .config file used
to compile your kernel, and the lids.conf and lids.cap files located in

/etc/lids directory. Any errors found in this man page should be sent to
Sander Klein.

FILES

/etc/lids/lids.conf - LIDS configuration file.

/etc/lids/lids.cap - Defines the global capabilities.

/etc/lids/lids.net - Configuration file for e-mail alerts.

/etc/lids/lids.pw - Contains the encrypted LIDS password.

SEE ALSO

lidsconf(8)

AUTHORS

Huagang Xie <xie@lids.org>

Philippe Biondi <biondi@cartel-securite.fr>

Manpage written by Sander Klein <roedie@roedie.nl>

DISTRIBUTION

The newest version of LIDS can be obtained from http://www.lids.org/ or one of

it’s mirrors. LIDS is (C) 1999-2004 by Huagang Xie(xie@lids.org).

21. Booting Into LIDS and Switching to POSTBOOT Mode

21.1. Booting Into LIDS: BOOT Mode

Booting into your LIDS-enabled kernel you should see some LIDS-related messages in
/var/log/messages (or similar, depending on yoursyslog configuration). . .

Apr 18 16:11:00 pinback kernel: LIDS: Initializing sysctl
Apr 18 16:11:00 pinback kernel: LIDS: Initializing LIDS ACLs
Apr 18 16:11:00 pinback kernel: LIDS: user space is 32 bit
Apr 18 16:11:00 pinback kernel: LIDS: lidsadm inode 0x9fb7 dev 0x3:a

Apr 18 16:11:00 pinback kernel: LIDS: ACL Discovery: OFF, Effective \
Capability: 7fffffff, Total ACLs Count: 15

Apr 18 16:11:00 pinback kernel: LIDS: GLOBAL and BOOT state configuration \
files loaded

Apr 18 16:11:00 pinback kernel: LIDS: Entering BOOT state

Apr 18 16:11:00 pinback kernel: LIDS: Linux Intrusion Detection System \
2.2.2 started

36

Unix and Linux Security: LIDS

It’s worth examining these messages line by line to see what’s going on.

Initializing sysctl

Initializing LIDS ACLS

user space is 32 bit

lidsadm inode...

ACL Discovery: OFF

GLOBAL and BOOT state configured

Entering BOOT state

Linux Intrusion Detection System Started

21.2. Switching to POSTBOOT Mode

Immediately after booting the LIDS-enabled kernel is not yet fully functional: while LIDS File
ACLs are enforced, LIDS Capability ACLs are not and the kernel is not “sealed” — modules may
still be loaded or unloaded. To seal the kernel and enforce LIDS Capability ACLs issue the command

lidsadm -I

In /var/log/messages (or similar, depending on yoursyslog configuration) you will see

Apr 18 16:23:36 pinback kernel: LIDS: Initializing LIDS ACLs
Apr 18 16:23:36 pinback kernel: LIDS: user space is 32 bit

Apr 18 16:23:36 pinback kernel: LIDS: ACL Discovery: \
OFF, Effective Capability: 3684ce7f, Total ACLs Count: 14

Apr 18 16:23:36 pinback kernel: LIDS: Attaching ACLs to Processes

Apr 18 16:23:36 pinback kernel: LIDS: GLOBAL and POSTBOOT state Config. \
files loaded

Apr 18 16:23:36 pinback kernel: LIDS: Switching to POSTBOOT state

37

Unix and Linux Security: LIDS

It’s again worth examining these messages line by line to see what’s going on — we omit those we
have seen before (above).

GLOBAL and POSTBOOT state Config. files loaded

Switching to POSTBOOT state

22. LIDS States
Introductory material on LIDSstatesand ACLtypescan be found in the Quick Start [Page 10].

It is a good idea to switch states automatically after the boot sequence finishes, and before shutting
down the system, byt creating a suitableinit script

#!/bin/sh

case "$1" in
start) /sbin/lidsadm -I
stop) /sbin/lidsadm -S -- +SHUTDOWN

*) echo "Usage: $0 start" >&2; exit 1 ;;
esac
exit 0;

and sym-linking this appropriately, e.g.,

/etc/rc2.d/S99lidsinit

for Debian, or

/etc/rc3.d/S99lidsinit
/etc/rc5.d/S99lidsinit

for RedHat and (for all)

/etc/rc0.d/K1lidsinit

23. LIDS Files

23.1. Configuration Files

Whenlidsconf is used to add ACLs (lidsconf -A...) they are stored in the*.conf files

/etc/lids/lids.conf
/lids.boot.conf
/lids.postboot.conf

/lids.shutdown.conf

38

Unix and Linux Security: LIDS

if acl_type is specified [Page 29], the rule is added to the corresponding.conf file, otherwise the
rule is added tolids.conf and is consideredGLOBAL, i.e, applies across all states.These files should
NOT normally be manually edited. The following illustrates the contents of a.conf file:

subject subj. subject RWDAG inherit object object object ??

inode device path/name inode device path/name
.
0 : 0 : : 3 : 0 : 15937 : 780 : /var/log : 0-0

0 : 0 : : 7 : 0 : 15939 : 780 : /var/log/wtmp : 0-0

179884 : 778 : /bin/login : 1 : 0 : 33191 : 778 : /etc/shadow : 0-0

179885 : 778 : /bin/su : 1 : 0 : 33191 : 778 : /etc/shadow : 0-0

(subject inode and/or device equal to zero means “any file”) and

subject subj. subject RWDAG inh. obj. cap. cap. ??

inode device path/name inode num.
.
.
179884 : 778 : /bin/login : 16 : 0 : -1 : 7 : CAP_SETUID : 0-0

179885 : 778 : /bin/su : 16 : 0 : -1 : 7 : CAP_SETUID : 0-0
31917 : 779 : /usr/sbin/exim4 : 16 : -1 : -1 : 31 : CAP_PROTECTED : 0-0

(capability-associated ACLS are given an object inode equal to-1).

The*.cap files

/etc/lids/lids.cap

/lids.boot.cap

/lids.postboot.cap

/lids.shutdown.cap

specify whether each capability is switched off or on by default. Capability settings for a particular
state override, i.e., those specified bylids.*.cap override global settings (inlids.cap).

Whenlidsconf is used to check and compile added ACLs (lidsconf -C) updated*.acl files are
created from the.cap and.conf files.

/etc/lids/lids.boot.acl
/etc/lids/lids.postboot.acl

/etc/lids/lids.shutdown.acl

These files are read when the commandlidsadm -S -- +RELOAD_CONF is issued

Some initial values for LIDS are stored in

/etc/lids.ini

Finally, an encrypted version of the LIDS password is stored in

/etc/lids.pw

39

Unix and Linux Security: LIDS

23.2. Lids Tools
The LIDS Tools are installed, by default in/sbin:

/sbin/lidsconf
/lidsadm

23.3. man Pages

Theman pages install, by default, in/usr/local/share/:

/usr/local/share/man/man8/lidsadm.8
lidsconf.8

If necessary adjust yourMANPATH environment variable to include this path, e.g.,:
export MANPATH=$MANPATH:/usr/local/share/man.

23.4. Source Files
You should start with a “vanilla” source fromwww.kernel.org, rather than a tree from your distro,
which traditionally unpacked in/usr/local

/usr/local/src/linux-2.xy.pq/

and the corresponding LIDS source

/usr/local/src/lids-2.2.2-2.xy.pq/

/lidstools-2.2.7

23.5. Boot Files
A minimum of your new kernel, and the correspondingSystem.map

/boot/vmlinuz-<version>
System.map-<version>

optionally the correspondingconfig file for documentation purposes

config-<version>

and possibly, depending on your kernel configuration — is it modular, does it require extra drivers,
e.g.,scsi.o> — aninitrd image

initrd.img-<version>

and some modules

/lib/modules/<version>//

Finally, so you can boot your LIDS-enabled kernel, a GRUB entry,

/boot/grub/menu.lst

40

Unix and Linux Security: LIDS

About this page:

Produced from the SGML: /home/mc/public_html/_unix_security/_reml_grp/unix_sec_kernel_lids.reml

On: 17/5/2006 at 15:1:18

Options: reml2 -l nolong -o tex -p single

41

